Table of contents: Definitions - L-series - Euler product - Hurwitz zeta representation - Principal and non-primitive characters - Value at 1 - Value at 0 - Values at negative integers - Zeros - Conjugate symmetry - Functional equation - Analytic properties - Approximations - Bounds and inequalities - Related topics
Fungrim symbol | Notation | Short description |
---|---|---|
DirichletL | L(s,χ) | Dirichlet L-function |
Entry(ID("d5a598"), SymbolDefinition(DirichletL, DirichletL(s, chi), "Dirichlet L-function"))
L\!\left(s, \chi\right) = \sum_{n=1}^{\infty} \frac{\chi(n)}{{n}^{s}} q \in \mathbb{Z}_{\ge 1} \;\mathbin{\operatorname{and}}\; \chi \in G_{q} \;\mathbin{\operatorname{and}}\; s \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \operatorname{Re}(s) > 1
Fungrim symbol | Notation | Short description |
---|---|---|
DirichletL | L(s,χ) | Dirichlet L-function |
Sum | ∑nf(n) | Sum |
Pow | ab | Power |
Infinity | ∞ | Positive infinity |
ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
DirichletGroup | Gq | Dirichlet characters with given modulus |
CC | C | Complex numbers |
Re | Re(z) | Real part |
Entry(ID("604c7c"), Formula(Equal(DirichletL(s, chi), Sum(Div(chi(n), Pow(n, s)), For(n, 1, Infinity)))), Variables(q, chi, s), Assumptions(And(Element(q, ZZGreaterEqual(1)), Element(chi, DirichletGroup(q)), Element(s, CC), Greater(Re(s), 1))))
\frac{1}{L\!\left(s, \chi\right)} = \sum_{n=1}^{\infty} \frac{\mu(n) \chi(n)}{{n}^{s}} q \in \mathbb{Z}_{\ge 1} \;\mathbin{\operatorname{and}}\; \chi \in G_{q} \;\mathbin{\operatorname{and}}\; s \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \operatorname{Re}(s) > 1
Fungrim symbol | Notation | Short description |
---|---|---|
DirichletL | L(s,χ) | Dirichlet L-function |
Sum | ∑nf(n) | Sum |
MoebiusMu | μ(n) | Möbius function |
Pow | ab | Power |
Infinity | ∞ | Positive infinity |
ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
DirichletGroup | Gq | Dirichlet characters with given modulus |
CC | C | Complex numbers |
Re | Re(z) | Real part |
Entry(ID("291569"), Formula(Equal(Div(1, DirichletL(s, chi)), Sum(Div(Mul(MoebiusMu(n), chi(n)), Pow(n, s)), For(n, 1, Infinity)))), Variables(q, chi, s), Assumptions(And(Element(q, ZZGreaterEqual(1)), Element(chi, DirichletGroup(q)), Element(s, CC), Greater(Re(s), 1))))
L\!\left(s, \chi\right) = \prod_{p} \frac{1}{1 - \chi(p) {p}^{-s}} q \in \mathbb{Z}_{\ge 1} \;\mathbin{\operatorname{and}}\; \chi \in G_{q} \;\mathbin{\operatorname{and}}\; s \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \operatorname{Re}(s) > 1
Fungrim symbol | Notation | Short description |
---|---|---|
DirichletL | L(s,χ) | Dirichlet L-function |
PrimeProduct | ∏pf(p) | Product over primes |
Pow | ab | Power |
ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
DirichletGroup | Gq | Dirichlet characters with given modulus |
CC | C | Complex numbers |
Re | Re(z) | Real part |
Entry(ID("d088ea"), Formula(Equal(DirichletL(s, chi), PrimeProduct(Div(1, Sub(1, Mul(chi(p), Pow(p, Neg(s))))), For(p)))), Variables(q, chi, s), Assumptions(And(Element(q, ZZGreaterEqual(1)), Element(chi, DirichletGroup(q)), Element(s, CC), Greater(Re(s), 1))))
\frac{1}{L\!\left(s, \chi\right)} = \prod_{p} \left(1 - \frac{\chi(p)}{{p}^{s}}\right) q \in \mathbb{Z}_{\ge 1} \;\mathbin{\operatorname{and}}\; \chi \in G_{q} \;\mathbin{\operatorname{and}}\; s \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \operatorname{Re}(s) > 1
Fungrim symbol | Notation | Short description |
---|---|---|
DirichletL | L(s,χ) | Dirichlet L-function |
PrimeProduct | ∏pf(p) | Product over primes |
Pow | ab | Power |
ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
DirichletGroup | Gq | Dirichlet characters with given modulus |
CC | C | Complex numbers |
Re | Re(z) | Real part |
Entry(ID("0f96c3"), Formula(Equal(Div(1, DirichletL(s, chi)), PrimeProduct(Parentheses(Sub(1, Div(chi(p), Pow(p, s)))), For(p)))), Variables(q, chi, s), Assumptions(And(Element(q, ZZGreaterEqual(1)), Element(chi, DirichletGroup(q)), Element(s, CC), Greater(Re(s), 1))))
Fungrim symbol | Notation | Short description |
---|---|---|
HurwitzZeta | ζ(s,a) | Hurwitz zeta function |
Entry(ID("04217b"), SymbolDefinition(HurwitzZeta, HurwitzZeta(s, a), "Hurwitz zeta function"), CodeExample(HurwitzZeta(s, a), "represents the Hurwitz zeta function of argument", s, "and parameter", a, "."), CodeExample(HurwitzZeta(s, a, 1), "represents the Hurwitz zeta function of argument", s, "and parameter", a, ", differentiated once with respect to", s, "."), CodeExample(HurwitzZeta(s, a, r), "represents the Hurwitz zeta function of argument", s, "and parameter", a, ", differentiated to order", r, "with respect to", s, "."), References("https://dlmf.nist.gov/25.11", "http://functions.wolfram.com/ZetaFunctionsandPolylogarithms/Zeta2/"))
L\!\left(s, \chi\right) = \frac{1}{{q}^{s}} \sum_{k=1}^{q} \chi(k) \zeta\!\left(s, \frac{k}{q}\right) q \in \mathbb{Z}_{\ge 1} \;\mathbin{\operatorname{and}}\; \chi \in G_{q} \;\mathbin{\operatorname{and}}\; s \in \mathbb{C} \setminus \left\{1\right\}
Fungrim symbol | Notation | Short description |
---|---|---|
DirichletL | L(s,χ) | Dirichlet L-function |
Pow | ab | Power |
Sum | ∑nf(n) | Sum |
HurwitzZeta | ζ(s,a) | Hurwitz zeta function |
ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
DirichletGroup | Gq | Dirichlet characters with given modulus |
CC | C | Complex numbers |
Entry(ID("c31c10"), Formula(Equal(DirichletL(s, chi), Mul(Div(1, Pow(q, s)), Sum(Mul(chi(k), HurwitzZeta(s, Div(k, q))), For(k, 1, q))))), Variables(q, chi, s), Assumptions(And(Element(q, ZZGreaterEqual(1)), Element(chi, DirichletGroup(q)), Element(s, SetMinus(CC, Set(1))))))
\zeta\!\left(s, \frac{k}{q}\right) = \frac{{q}^{s}}{\varphi(q)} \sum_{\chi \in G_{q}} \overline{\chi(k)} L\!\left(s, \chi\right) q \in \mathbb{Z}_{\ge 2} \;\mathbin{\operatorname{and}}\; k \in \{1, 2, \ldots, q - 1\} \;\mathbin{\operatorname{and}}\; \gcd\!\left(k, q\right) = 1 \;\mathbin{\operatorname{and}}\; s \in \mathbb{C} \setminus \left\{1\right\}
Fungrim symbol | Notation | Short description |
---|---|---|
HurwitzZeta | ζ(s,a) | Hurwitz zeta function |
Pow | ab | Power |
Totient | φ(n) | Euler totient function |
Sum | ∑nf(n) | Sum |
Conjugate | z | Complex conjugate |
DirichletL | L(s,χ) | Dirichlet L-function |
DirichletGroup | Gq | Dirichlet characters with given modulus |
ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
Range | {a,a+1,…,b} | Integers between given endpoints |
GCD | gcd(a,b) | Greatest common divisor |
CC | C | Complex numbers |
Entry(ID("4c3678"), Formula(Equal(HurwitzZeta(s, Div(k, q)), Mul(Div(Pow(q, s), Totient(q)), Sum(Mul(Conjugate(chi(k)), DirichletL(s, chi)), ForElement(chi, DirichletGroup(q)))))), Variables(q, k, s), Assumptions(And(Element(q, ZZGreaterEqual(2)), Element(k, Range(1, Sub(q, 1))), Equal(GCD(k, q), 1), Element(s, SetMinus(CC, Set(1))))))
L\!\left(s, \chi_{1 \, . \, 1}\right) = \zeta\!\left(s\right) s \in \mathbb{C}
Fungrim symbol | Notation | Short description |
---|---|---|
DirichletL | L(s,χ) | Dirichlet L-function |
DirichletCharacter | χq.ℓ | Dirichlet character |
RiemannZeta | ζ(s) | Riemann zeta function |
CC | C | Complex numbers |
Entry(ID("a9337b"), Formula(Equal(DirichletL(s, DirichletCharacter(1, 1)), RiemannZeta(s))), Variables(s), Assumptions(Element(s, CC)))
L\!\left(s, \chi_{{2}^{n} \, . \, 1}\right) = \left(1 - {2}^{-s}\right) \zeta\!\left(s\right) n \in \mathbb{Z}_{\ge 1} \;\mathbin{\operatorname{and}}\; s \in \mathbb{C}
Fungrim symbol | Notation | Short description |
---|---|---|
DirichletL | L(s,χ) | Dirichlet L-function |
DirichletCharacter | χq.ℓ | Dirichlet character |
Pow | ab | Power |
RiemannZeta | ζ(s) | Riemann zeta function |
ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
CC | C | Complex numbers |
Entry(ID("ff8254"), Formula(Equal(DirichletL(s, DirichletCharacter(Pow(2, n), 1)), Mul(Sub(1, Pow(2, Neg(s))), RiemannZeta(s)))), Variables(n, s), Assumptions(And(Element(n, ZZGreaterEqual(1)), Element(s, CC))))
L\!\left(s, \chi_{q \, . \, 1}\right) = \zeta\!\left(s\right) \prod_{p \mid q} \left(1 - \frac{1}{{p}^{s}}\right) q \in \mathbb{Z}_{\ge 1} \;\mathbin{\operatorname{and}}\; s \in \mathbb{C}
Fungrim symbol | Notation | Short description |
---|---|---|
DirichletL | L(s,χ) | Dirichlet L-function |
DirichletCharacter | χq.ℓ | Dirichlet character |
RiemannZeta | ζ(s) | Riemann zeta function |
PrimeProduct | ∏pf(p) | Product over primes |
Pow | ab | Power |
ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
CC | C | Complex numbers |
Entry(ID("629f70"), Formula(Equal(DirichletL(s, DirichletCharacter(q, 1)), Mul(RiemannZeta(s), PrimeProduct(Parentheses(Sub(1, Div(1, Pow(p, s)))), For(p), Divides(p, q))))), Variables(q, s), Assumptions(And(Element(q, ZZGreaterEqual(1)), Element(s, CC))))
L\!\left(s, \chi\right) = L\!\left(s, {\chi}_{0}\right) \prod_{p \mid q} \left(1 - \frac{{\chi}_{0}\!\left(p\right)}{{p}^{s}}\right)\; \text{ where } {\chi}_{1} = \chi_{q \, . \, 1},\;\chi = {\chi}_{0} {\chi}_{1} q \in \mathbb{Z}_{\ge 1} \;\mathbin{\operatorname{and}}\; d \in \{1, 2, \ldots, q\} \;\mathbin{\operatorname{and}}\; d \mid q \;\mathbin{\operatorname{and}}\; {\chi}_{0} \in G^{\text{Primitive}}_{d} \;\mathbin{\operatorname{and}}\; s \in \mathbb{C}
Fungrim symbol | Notation | Short description |
---|---|---|
DirichletL | L(s,χ) | Dirichlet L-function |
PrimeProduct | ∏pf(p) | Product over primes |
Pow | ab | Power |
DirichletCharacter | χq.ℓ | Dirichlet character |
ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
Range | {a,a+1,…,b} | Integers between given endpoints |
PrimitiveDirichletCharacters | GqPrimitive | Primitive Dirichlet characters with given modulus |
CC | C | Complex numbers |
Entry(ID("1bd945"), Formula(Where(Equal(DirichletL(s, chi), Mul(DirichletL(s, Subscript(chi, 0)), PrimeProduct(Parentheses(Sub(1, Div(Call(Subscript(chi, 0), p), Pow(p, s)))), For(p), Divides(p, q)))), Equal(Subscript(chi, 1), DirichletCharacter(q, 1)), Equal(chi, Mul(Subscript(chi, 0), Subscript(chi, 1))))), Variables(q, d, Subscript(chi, 0), s), Assumptions(And(Element(q, ZZGreaterEqual(1)), Element(d, Range(1, q)), Divides(d, q), Element(Subscript(chi, 0), PrimitiveDirichletCharacters(d)), Element(s, CC))), Description("This allows an L-function of a non-primitive character to be expressed in terms of an L-function of a primitive character."))
L\!\left(1, \chi\right) = \begin{cases} {\tilde \infty}, & \chi = \chi_{q \, . \, 1}\\\lim_{s \to 1} L\!\left(s, \chi\right), & \text{otherwise}\\ \end{cases} q \in \mathbb{Z}_{\ge 1} \;\mathbin{\operatorname{and}}\; \chi \in G_{q}
Fungrim symbol | Notation | Short description |
---|---|---|
DirichletL | L(s,χ) | Dirichlet L-function |
UnsignedInfinity | ∞~ | Unsigned infinity |
DirichletCharacter | χq.ℓ | Dirichlet character |
ComplexLimit | limz→af(z) | Limiting value, complex variable |
ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
DirichletGroup | Gq | Dirichlet characters with given modulus |
Entry(ID("6c3fff"), Formula(Equal(DirichletL(1, chi), Cases(Tuple(UnsignedInfinity, Equal(chi, DirichletCharacter(q, 1))), Tuple(ComplexLimit(DirichletL(s, chi), For(s, 1)), Otherwise)))), Variables(q, chi), Assumptions(And(Element(q, ZZGreaterEqual(1)), Element(chi, DirichletGroup(q)))))
L\!\left(1, \chi\right) \ne 0 q \in \mathbb{Z}_{\ge 1} \;\mathbin{\operatorname{and}}\; \chi \in G_{q}
Fungrim symbol | Notation | Short description |
---|---|---|
DirichletL | L(s,χ) | Dirichlet L-function |
ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
DirichletGroup | Gq | Dirichlet characters with given modulus |
Entry(ID("3d5327"), Formula(NotEqual(DirichletL(1, chi), 0)), Variables(q, chi), Assumptions(And(Element(q, ZZGreaterEqual(1)), Element(chi, DirichletGroup(q)))))
L\!\left(1, \chi\right) \notin \overline{\mathbb{Q}} q \in \mathbb{Z}_{\ge 1} \;\mathbin{\operatorname{and}}\; \chi \in G_{q}
Fungrim symbol | Notation | Short description |
---|---|---|
DirichletL | L(s,χ) | Dirichlet L-function |
AlgebraicNumbers | Q | Algebraic numbers |
ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
DirichletGroup | Gq | Dirichlet characters with given modulus |
Entry(ID("5c4552"), Formula(NotElement(DirichletL(1, chi), AlgebraicNumbers)), Variables(q, chi), Assumptions(And(Element(q, ZZGreaterEqual(1)), Element(chi, DirichletGroup(q)))), References("https://doi.org/10.4153/CJM-2010-078-9"))
\lim_{s \to 1} \left(s - 1\right) L\!\left(1, \chi_{q \, . \, 1}\right) = \frac{\varphi(q)}{q} q \in \mathbb{Z}_{\ge 1}
Fungrim symbol | Notation | Short description |
---|---|---|
ComplexLimit | limz→af(z) | Limiting value, complex variable |
DirichletL | L(s,χ) | Dirichlet L-function |
DirichletCharacter | χq.ℓ | Dirichlet character |
Totient | φ(n) | Euler totient function |
ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
Entry(ID("23256b"), Formula(Equal(ComplexLimit(Mul(Sub(s, 1), DirichletL(1, DirichletCharacter(q, 1))), For(s, 1)), Div(Totient(q), q))), Variables(q), Assumptions(Element(q, ZZGreaterEqual(1))))
L\!\left(1, \chi\right) = -\frac{1}{q} \sum_{k=1}^{q - 1} \chi(k) \psi\!\left(\frac{k}{q}\right) q \in \mathbb{Z}_{\ge 1} \;\mathbin{\operatorname{and}}\; \chi \in G_{q} \;\mathbin{\operatorname{and}}\; \chi \ne \chi_{q \, . \, 1}
Fungrim symbol | Notation | Short description |
---|---|---|
DirichletL | L(s,χ) | Dirichlet L-function |
Sum | ∑nf(n) | Sum |
DigammaFunction | ψ(z) | Digamma function |
ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
DirichletGroup | Gq | Dirichlet characters with given modulus |
DirichletCharacter | χq.ℓ | Dirichlet character |
Entry(ID("c2750a"), Formula(Equal(DirichletL(1, chi), Neg(Mul(Div(1, q), Sum(Mul(chi(k), DigammaFunction(Div(k, q))), For(k, 1, Sub(q, 1))))))), Variables(q, chi), Assumptions(And(Element(q, ZZGreaterEqual(1)), Element(chi, DirichletGroup(q)), NotEqual(chi, DirichletCharacter(q, 1)))))
L\!\left(1, \chi_{3 \, . \, 2}\right) = \frac{\pi}{\sqrt{27}}
Fungrim symbol | Notation | Short description |
---|---|---|
DirichletL | L(s,χ) | Dirichlet L-function |
DirichletCharacter | χq.ℓ | Dirichlet character |
Pi | π | The constant pi (3.14...) |
Sqrt | z | Principal square root |
Entry(ID("d83109"), Formula(Equal(DirichletL(1, DirichletCharacter(3, 2)), Div(Pi, Sqrt(27)))))
L\!\left(1, \chi_{4 \, . \, 3}\right) = \frac{\pi}{4}
Fungrim symbol | Notation | Short description |
---|---|---|
DirichletL | L(s,χ) | Dirichlet L-function |
DirichletCharacter | χq.ℓ | Dirichlet character |
Pi | π | The constant pi (3.14...) |
Entry(ID("3b8c97"), Formula(Equal(DirichletL(1, DirichletCharacter(4, 3)), Div(Pi, 4))))
L\!\left(1, \chi_{5 \, . \, 4}\right) = \frac{2 \log(\varphi)}{\sqrt{5}}
Fungrim symbol | Notation | Short description |
---|---|---|
DirichletL | L(s,χ) | Dirichlet L-function |
DirichletCharacter | χq.ℓ | Dirichlet character |
Log | log(z) | Natural logarithm |
GoldenRatio | φ | The golden ratio (1.618...) |
Sqrt | z | Principal square root |
Entry(ID("c9d117"), Formula(Equal(DirichletL(1, DirichletCharacter(5, 4)), Div(Mul(2, Log(GoldenRatio)), Sqrt(5)))))
L\!\left(0, \chi_{q \, . \, 1}\right) = \begin{cases} -\frac{1}{2}, & q = 1\\0, & \text{otherwise}\\ \end{cases} q \in \mathbb{Z}_{\ge 1}
Fungrim symbol | Notation | Short description |
---|---|---|
DirichletL | L(s,χ) | Dirichlet L-function |
DirichletCharacter | χq.ℓ | Dirichlet character |
ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
Entry(ID("a07d28"), Formula(Equal(DirichletL(0, DirichletCharacter(q, 1)), Cases(Tuple(Neg(Div(1, 2)), Equal(q, 1)), Tuple(0, Otherwise)))), Variables(q), Assumptions(And(Element(q, ZZGreaterEqual(1)))))
L\!\left(0, \chi\right) = -\frac{1}{q} \sum_{k=1}^{q} k \chi(k) q \in \mathbb{Z}_{\ge 1} \;\mathbin{\operatorname{and}}\; \chi \in G_{q} \;\mathbin{\operatorname{and}}\; \chi \ne \chi_{q \, . \, 1}
Fungrim symbol | Notation | Short description |
---|---|---|
DirichletL | L(s,χ) | Dirichlet L-function |
Sum | ∑nf(n) | Sum |
ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
DirichletGroup | Gq | Dirichlet characters with given modulus |
DirichletCharacter | χq.ℓ | Dirichlet character |
Entry(ID("789ca4"), Formula(Equal(DirichletL(0, chi), Mul(Neg(Div(1, q)), Sum(Mul(k, chi(k)), For(k, 1, q))))), Variables(chi, q), Assumptions(And(Element(q, ZZGreaterEqual(1)), Element(chi, DirichletGroup(q)), NotEqual(chi, DirichletCharacter(q, 1)))))
\left(\chi(-1) = 1\right) \;\implies\; \left(L\!\left(0, \chi\right) = 0\right) q \in \mathbb{Z}_{\ge 2} \;\mathbin{\operatorname{and}}\; \chi \in G_{q}
Fungrim symbol | Notation | Short description |
---|---|---|
DirichletL | L(s,χ) | Dirichlet L-function |
ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
DirichletGroup | Gq | Dirichlet characters with given modulus |
Entry(ID("fad52f"), Formula(Implies(Equal(chi(-1), 1), Equal(DirichletL(0, chi), 0))), Variables(chi, q), Assumptions(And(Element(q, ZZGreaterEqual(2)), Element(chi, DirichletGroup(q)))))
Fungrim symbol | Notation | Short description |
---|---|---|
GeneralizedBernoulliB | Bn,χ | Generalized Bernoulli number |
Entry(ID("cb5d51"), SymbolDefinition(GeneralizedBernoulliB, GeneralizedBernoulliB(n, chi), "Generalized Bernoulli number"))
B_{n,\chi} = \sum_{a=1}^{q} \chi(a) \sum_{k=0}^{n} {n \choose k} B_{k} {a}^{n - k} {q}^{k - 1} q \in \mathbb{Z}_{\ge 1} \;\mathbin{\operatorname{and}}\; \chi \in G_{q} \;\mathbin{\operatorname{and}}\; n \in \mathbb{Z}_{\ge 0}
Fungrim symbol | Notation | Short description |
---|---|---|
GeneralizedBernoulliB | Bn,χ | Generalized Bernoulli number |
Sum | ∑nf(n) | Sum |
Binomial | (kn) | Binomial coefficient |
BernoulliB | Bn | Bernoulli number |
Pow | ab | Power |
ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
DirichletGroup | Gq | Dirichlet characters with given modulus |
Entry(ID("e44796"), Formula(Equal(GeneralizedBernoulliB(n, chi), Sum(Mul(chi(a), Sum(Mul(Mul(Mul(Binomial(n, k), BernoulliB(k)), Pow(a, Sub(n, k))), Pow(q, Sub(k, 1))), For(k, 0, n))), For(a, 1, q)))), Variables(q, chi, n), Assumptions(And(Element(q, ZZGreaterEqual(1)), Element(chi, DirichletGroup(q)), Element(n, ZZGreaterEqual(0)))))
B_{n,\chi} = {q}^{n - 1} \sum_{a=1}^{q} \chi(a) B_{n}\!\left(\frac{a}{q}\right) q \in \mathbb{Z}_{\ge 1} \;\mathbin{\operatorname{and}}\; \chi \in G_{q} \;\mathbin{\operatorname{and}}\; n \in \mathbb{Z}_{\ge 0}
Fungrim symbol | Notation | Short description |
---|---|---|
GeneralizedBernoulliB | Bn,χ | Generalized Bernoulli number |
Pow | ab | Power |
Sum | ∑nf(n) | Sum |
BernoulliPolynomial | Bn(z) | Bernoulli polynomial |
ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
DirichletGroup | Gq | Dirichlet characters with given modulus |
Entry(ID("3e0817"), Formula(Equal(GeneralizedBernoulliB(n, chi), Mul(Pow(q, Sub(n, 1)), Sum(Mul(chi(a), BernoulliPolynomial(n, Div(a, q))), For(a, 1, q))))), Variables(q, chi, n), Assumptions(And(Element(q, ZZGreaterEqual(1)), Element(chi, DirichletGroup(q)), Element(n, ZZGreaterEqual(0)))))
B_{0,\chi} = \begin{cases} \frac{\varphi(q)}{q}, & \chi = \chi_{q \, . \, 1}\\0, & \text{otherwise}\\ \end{cases} q \in \mathbb{Z}_{\ge 1} \;\mathbin{\operatorname{and}}\; \chi \in G_{q}
Fungrim symbol | Notation | Short description |
---|---|---|
GeneralizedBernoulliB | Bn,χ | Generalized Bernoulli number |
Totient | φ(n) | Euler totient function |
DirichletCharacter | χq.ℓ | Dirichlet character |
ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
DirichletGroup | Gq | Dirichlet characters with given modulus |
Entry(ID("f7a866"), Formula(Equal(GeneralizedBernoulliB(0, chi), Cases(Tuple(Div(Totient(q), q), Equal(chi, DirichletCharacter(q, 1))), Tuple(0, Otherwise)))), Variables(q, chi), Assumptions(And(Element(q, ZZGreaterEqual(1)), Element(chi, DirichletGroup(q)))))
\sum_{a=1}^{q} \chi(a) \frac{z {e}^{a z}}{{e}^{q z} - 1} = \sum_{n=0}^{\infty} B_{n,\chi} \frac{{z}^{n}}{n !} q \in \mathbb{Z}_{\ge 1} \;\mathbin{\operatorname{and}}\; \chi \in G_{q} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; z \ne 0 \;\mathbin{\operatorname{and}}\; \left|z\right| < \frac{2 \pi}{q}
Fungrim symbol | Notation | Short description |
---|---|---|
Sum | ∑nf(n) | Sum |
Exp | ez | Exponential function |
GeneralizedBernoulliB | Bn,χ | Generalized Bernoulli number |
Pow | ab | Power |
Factorial | n! | Factorial |
Infinity | ∞ | Positive infinity |
ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
DirichletGroup | Gq | Dirichlet characters with given modulus |
CC | C | Complex numbers |
Abs | ∣z∣ | Absolute value |
Pi | π | The constant pi (3.14...) |
Entry(ID("d69b41"), Formula(Equal(Sum(Mul(chi(a), Div(Mul(z, Exp(Mul(a, z))), Sub(Exp(Mul(q, z)), 1))), For(a, 1, q)), Sum(Mul(GeneralizedBernoulliB(n, chi), Div(Pow(z, n), Factorial(n))), For(n, 0, Infinity)))), Variables(q, chi, z), Assumptions(And(Element(q, ZZGreaterEqual(1)), Element(chi, DirichletGroup(q)), Element(z, CC), NotEqual(z, 0), Less(Abs(z), Div(Mul(2, Pi), q)))))
L\!\left(-n, \chi\right) = -\frac{B_{n + 1,\chi}}{n + 1} q \in \mathbb{Z}_{\ge 1} \;\mathbin{\operatorname{and}}\; \chi \in G_{q} \;\mathbin{\operatorname{and}}\; n \in \mathbb{Z}_{\ge 0}
Fungrim symbol | Notation | Short description |
---|---|---|
DirichletL | L(s,χ) | Dirichlet L-function |
GeneralizedBernoulliB | Bn,χ | Generalized Bernoulli number |
ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
DirichletGroup | Gq | Dirichlet characters with given modulus |
Entry(ID("f5c3c5"), Formula(Equal(DirichletL(Neg(n), chi), Neg(Div(GeneralizedBernoulliB(Add(n, 1), chi), Add(n, 1))))), Variables(q, chi, n), Assumptions(And(Element(q, ZZGreaterEqual(1)), Element(chi, DirichletGroup(q)), Element(n, ZZGreaterEqual(0)))))
Fungrim symbol | Notation | Short description |
---|---|---|
DirichletLZero | ρn,χ | Nontrivial zero of Dirichlet L-function |
RiemannZetaZero | ρn | Nontrivial zero of the Riemann zeta function |
Im | Im(z) | Imaginary part |
Entry(ID("3f96c1"), SymbolDefinition(DirichletLZero, DirichletLZero(n, chi), "Nontrivial zero of Dirichlet L-function"), Description("Generalizing", SourceForm(RiemannZetaZero), ", this gives an enumeration of the nontrivial zeros of a given Dirichlet L-function, where eventual repeated zeros are counted separately.", "The index", n, "is a nonzero integer such that", Greater(n, 0), "gives zeros with", Greater(Im(DirichletLZero(n, chi)), 0), ", ordered by increasing imaginary part, while", Less(n, 0), "gives zeros with", LessEqual(Im(DirichletLZero(n, chi)), 0), ", ordered by decreasing imaginary part."))
Fungrim symbol | Notation | Short description |
---|---|---|
GeneralizedRiemannHypothesis | GRH | Generalized Riemann hypothesis |
Entry(ID("dc593e"), SymbolDefinition(GeneralizedRiemannHypothesis, GeneralizedRiemannHypothesis, "Generalized Riemann hypothesis"), Description("Represents the truth value of the generalized Riemann hypothesis for Dirichlet L-functions, defined in ", EntryReference("e2a734"), "."), Description("Semantically, ", Element(GeneralizedRiemannHypothesis, Set(True_, False_)), "."), Description("This symbol can be used in an assumption to express that a formula is valid conditionally on the truth of the generalized Riemann hypothesis."))
\left(\operatorname{GRH}\right) \iff \left(\operatorname{Re}\!\left(\rho_{n,\chi}\right) = \frac{1}{2} \;\text{ for all } \left(q, \chi, n\right) \text{ with } q \in \mathbb{Z}_{\ge 1} \;\mathbin{\operatorname{and}}\; \chi \in G_{q} \;\mathbin{\operatorname{and}}\; n \in \mathbb{Z} \setminus \left\{0\right\}\right)
Fungrim symbol | Notation | Short description |
---|---|---|
GeneralizedRiemannHypothesis | GRH | Generalized Riemann hypothesis |
Re | Re(z) | Real part |
DirichletLZero | ρn,χ | Nontrivial zero of Dirichlet L-function |
ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
DirichletGroup | Gq | Dirichlet characters with given modulus |
ZZ | Z | Integers |
Entry(ID("e2a734"), Formula(Equivalent(GeneralizedRiemannHypothesis, All(Equal(Re(DirichletLZero(n, chi)), Div(1, 2)), For(Tuple(q, chi, n)), And(Element(q, ZZGreaterEqual(1)), Element(chi, DirichletGroup(q)), Element(n, SetMinus(ZZ, Set(0))))))))
0 < \operatorname{Re}\!\left(\rho_{n,\chi}\right) < 1 q \in \mathbb{Z}_{\ge 1} \;\mathbin{\operatorname{and}}\; \chi \in G^{\text{Primitive}}_{q} \;\mathbin{\operatorname{and}}\; n \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; n \ne 0
Fungrim symbol | Notation | Short description |
---|---|---|
Re | Re(z) | Real part |
DirichletLZero | ρn,χ | Nontrivial zero of Dirichlet L-function |
ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
PrimitiveDirichletCharacters | GqPrimitive | Primitive Dirichlet characters with given modulus |
ZZ | Z | Integers |
Entry(ID("982e3b"), Formula(Less(0, Re(DirichletLZero(n, chi)), 1)), Variables(q, n, chi), Assumptions(And(Element(q, ZZGreaterEqual(1)), Element(chi, PrimitiveDirichletCharacters(q)), Element(n, ZZ), NotEqual(n, 0))))
\mathop{\operatorname{zeros}\,}\limits_{s \in \mathbb{C},\,0 < \operatorname{Re}(s) < 1} L\!\left(s, \chi\right) = \left\{ \rho_{n,\chi} : n \in \mathbb{Z} \setminus \left\{0\right\} \right\} q \in \mathbb{Z}_{\ge 1} \;\mathbin{\operatorname{and}}\; \chi \in G_{q}
Fungrim symbol | Notation | Short description |
---|---|---|
Zeros | x∈Szerosf(x) | Zeros (roots) of function |
DirichletL | L(s,χ) | Dirichlet L-function |
CC | C | Complex numbers |
Re | Re(z) | Real part |
DirichletLZero | ρn,χ | Nontrivial zero of Dirichlet L-function |
ZZ | Z | Integers |
ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
DirichletGroup | Gq | Dirichlet characters with given modulus |
Entry(ID("2a34c3"), Formula(Equal(Zeros(DirichletL(s, chi), For(s), And(Element(s, CC), Less(0, Re(s), 1))), Set(DirichletLZero(n, chi), For(n), Element(n, SetMinus(ZZ, Set(0)))))), Variables(q, chi), Assumptions(And(Element(q, ZZGreaterEqual(1)), Element(chi, DirichletGroup(q)))))
\operatorname{Re}\!\left(\rho_{n,\chi}\right) = \frac{1}{2} q \in \mathbb{Z}_{\ge 1} \;\mathbin{\operatorname{and}}\; \chi \in G^{\text{Primitive}}_{q} \;\mathbin{\operatorname{and}}\; n \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; n \ne 0 \;\mathbin{\operatorname{and}}\; \left(\left(q < 400000 \;\mathbin{\operatorname{and}}\; \left|\operatorname{Im}\!\left(\rho_{n,\chi}\right)\right| < \frac{{10}^{8}}{q}\right) \;\mathbin{\operatorname{or}}\; \operatorname{GRH}\right)
Fungrim symbol | Notation | Short description |
---|---|---|
Re | Re(z) | Real part |
DirichletLZero | ρn,χ | Nontrivial zero of Dirichlet L-function |
ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
PrimitiveDirichletCharacters | GqPrimitive | Primitive Dirichlet characters with given modulus |
ZZ | Z | Integers |
Abs | ∣z∣ | Absolute value |
Im | Im(z) | Imaginary part |
Pow | ab | Power |
GeneralizedRiemannHypothesis | GRH | Generalized Riemann hypothesis |
Entry(ID("214a91"), Formula(Equal(Re(DirichletLZero(n, chi)), Div(1, 2))), Variables(q, n, chi), Assumptions(And(Element(q, ZZGreaterEqual(1)), Element(chi, PrimitiveDirichletCharacters(q)), Element(n, ZZ), NotEqual(n, 0), Or(And(Less(q, 400000), Less(Abs(Im(DirichletLZero(n, chi))), Div(Pow(10, 8), q))), GeneralizedRiemannHypothesis))), References("D. J. Platt (2013), Numerical computations concerning the GRH. https://arxiv.org/pdf/1305.3087.pdf"))
\mathop{\operatorname{zeros}\,}\limits_{s \in \mathbb{C}} L\!\left(s, \chi\right) = \left(\mathop{\operatorname{zeros}\,}\limits_{s \in \mathbb{C},\,\operatorname{Re}(s) \le 0} L\!\left(s, \chi\right)\right) \cup \left\{ \rho_{n,\chi} : n \in \mathbb{Z} \setminus \left\{0\right\} \right\} q \in \mathbb{Z}_{\ge 1} \;\mathbin{\operatorname{and}}\; \chi \in G_{q}
Fungrim symbol | Notation | Short description |
---|---|---|
Zeros | x∈Szerosf(x) | Zeros (roots) of function |
DirichletL | L(s,χ) | Dirichlet L-function |
CC | C | Complex numbers |
Re | Re(z) | Real part |
DirichletLZero | ρn,χ | Nontrivial zero of Dirichlet L-function |
ZZ | Z | Integers |
ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
DirichletGroup | Gq | Dirichlet characters with given modulus |
Entry(ID("bc755b"), Formula(Equal(Zeros(DirichletL(s, chi), ForElement(s, CC)), Union(Parentheses(Zeros(DirichletL(s, chi), For(s), And(Element(s, CC), LessEqual(Re(s), 0)))), Set(DirichletLZero(n, chi), For(n), Element(n, SetMinus(ZZ, Set(0))))))), Variables(q, chi), Assumptions(And(Element(q, ZZGreaterEqual(1)), Element(chi, DirichletGroup(q)))))
\mathop{\operatorname{zeros}\,}\limits_{s \in \mathbb{C},\,\operatorname{Re}(s) \le 0} L\!\left(s, \chi\right) = \begin{cases} \left\{ -2 n : n \in \mathbb{Z}_{\ge 1} \right\}, & q = 1\\\left\{ -2 n : n \in \mathbb{Z}_{\ge 0} \right\}, & \chi(-1) = 1 \;\mathbin{\operatorname{and}}\; q \ne 1\\\left\{ -2 n - 1 : n \in \mathbb{Z}_{\ge 0} \right\}, & \chi(-1) = -1\\ \end{cases} q \in \mathbb{Z}_{\ge 1} \;\mathbin{\operatorname{and}}\; \chi \in G^{\text{Primitive}}_{q}
Fungrim symbol | Notation | Short description |
---|---|---|
Zeros | x∈Szerosf(x) | Zeros (roots) of function |
DirichletL | L(s,χ) | Dirichlet L-function |
CC | C | Complex numbers |
Re | Re(z) | Real part |
ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
PrimitiveDirichletCharacters | GqPrimitive | Primitive Dirichlet characters with given modulus |
Entry(ID("9ba78a"), Formula(Equal(Zeros(DirichletL(s, chi), ForElement(s, CC), LessEqual(Re(s), 0)), Cases(Tuple(Set(Neg(Mul(2, n)), ForElement(n, ZZGreaterEqual(1))), Equal(q, 1)), Tuple(Set(Neg(Mul(2, n)), ForElement(n, ZZGreaterEqual(0))), And(Equal(chi(-1), 1), NotEqual(q, 1))), Tuple(Set(Sub(Neg(Mul(2, n)), 1), ForElement(n, ZZGreaterEqual(0))), Equal(chi(-1), -1))))), Variables(q, chi), Assumptions(And(Element(q, ZZGreaterEqual(1)), Element(chi, PrimitiveDirichletCharacters(q)))))
L\!\left(s, \overline{\chi}\right) = \overline{L\!\left(\overline{s}, \chi\right)} q \in \mathbb{Z}_{\ge 1} \;\mathbin{\operatorname{and}}\; \chi \in G_{q} \;\mathbin{\operatorname{and}}\; s \in \mathbb{C}
Fungrim symbol | Notation | Short description |
---|---|---|
DirichletL | L(s,χ) | Dirichlet L-function |
Conjugate | z | Complex conjugate |
ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
DirichletGroup | Gq | Dirichlet characters with given modulus |
CC | C | Complex numbers |
Entry(ID("7c86d5"), Formula(Equal(DirichletL(s, Conjugate(chi)), Conjugate(DirichletL(Conjugate(s), chi)))), Variables(s, q, chi), Assumptions(And(Element(q, ZZGreaterEqual(1)), Element(chi, DirichletGroup(q)), Element(s, CC))))
L\!\left(\overline{s}, \chi\right) = \overline{L\!\left(s, \overline{\chi}\right)} q \in \mathbb{Z}_{\ge 1} \;\mathbin{\operatorname{and}}\; \chi \in G_{q} \;\mathbin{\operatorname{and}}\; s \in \mathbb{C}
Fungrim symbol | Notation | Short description |
---|---|---|
DirichletL | L(s,χ) | Dirichlet L-function |
Conjugate | z | Complex conjugate |
CC | C | Complex numbers |
ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
DirichletGroup | Gq | Dirichlet characters with given modulus |
Entry(ID("50adea"), Formula(Equal(DirichletL(Conjugate(s), chi), Conjugate(DirichletL(s, Conjugate(chi))))), Variables(s, CC), Assumptions(And(Element(q, ZZGreaterEqual(1)), Element(chi, DirichletGroup(q)), Element(s, CC))))
L\!\left(\overline{s}, \overline{\chi}\right) = \overline{L\!\left(s, \chi\right)} q \in \mathbb{Z}_{\ge 1} \;\mathbin{\operatorname{and}}\; \chi \in G_{q} \;\mathbin{\operatorname{and}}\; s \in \mathbb{C}
Fungrim symbol | Notation | Short description |
---|---|---|
DirichletL | L(s,χ) | Dirichlet L-function |
Conjugate | z | Complex conjugate |
CC | C | Complex numbers |
ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
DirichletGroup | Gq | Dirichlet characters with given modulus |
Entry(ID("97fe89"), Formula(Equal(DirichletL(Conjugate(s), Conjugate(chi)), Conjugate(DirichletL(s, chi)))), Variables(s, CC), Assumptions(And(Element(q, ZZGreaterEqual(1)), Element(chi, DirichletGroup(q)), Element(s, CC))))
Fungrim symbol | Notation | Short description |
---|---|---|
DirichletLambda | Λ(s,χ) | Completed Dirichlet L-function |
Entry(ID("cc6a5a"), SymbolDefinition(DirichletLambda, DirichletLambda(s, chi), "Completed Dirichlet L-function"), Description("The completed Dirichlet L-function is an entire function of", s, ".", "It is defined by", EntryReference("b788a1"), "and taking the limiting value at the exceptional points", s, "where a pole appears in one of the constituent factors."), Description("In the literature, this function is sometimes multiplied by a different constant factor (depending on", chi, "but constant with respect to", s, ")."))
\Lambda\!\left(s, \chi\right) = \beta {\left(\frac{q}{\pi}\right)}^{\left( s + a \right) / 2} \Gamma\!\left(\frac{s + a}{2}\right) L\!\left(s, \chi\right)\; \text{ where } a = \frac{1 - \chi(-1)}{2},\;\beta = \begin{cases} s \left(s - 1\right), & q = 1\\1, & \text{otherwise}\\ \end{cases} q \in \mathbb{Z}_{\ge 1} \;\mathbin{\operatorname{and}}\; \chi \in G^{\text{Primitive}}_{q} \;\mathbin{\operatorname{and}}\; s \in \mathbb{C} \;\mathbin{\operatorname{and}}\; s \notin \begin{cases} \left\{ -2 n : n \in \mathbb{Z}_{\ge 0} \right\}, & \chi(-1) = 1\\\left\{ -2 n - 1 : n \in \mathbb{Z}_{\ge 0} \right\}, & \chi(-1) = -1\\ \end{cases} \;\mathbin{\operatorname{and}}\; \operatorname{not} \left(q = 1 \;\mathbin{\operatorname{and}}\; s = 1\right)
Fungrim symbol | Notation | Short description |
---|---|---|
DirichletLambda | Λ(s,χ) | Completed Dirichlet L-function |
Pow | ab | Power |
Pi | π | The constant pi (3.14...) |
Gamma | Γ(z) | Gamma function |
DirichletL | L(s,χ) | Dirichlet L-function |
ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
PrimitiveDirichletCharacters | GqPrimitive | Primitive Dirichlet characters with given modulus |
CC | C | Complex numbers |
Entry(ID("b788a1"), Formula(Equal(DirichletLambda(s, chi), Where(Mul(Mul(Mul(beta, Pow(Div(q, Pi), Div(Add(s, a), 2))), Gamma(Div(Add(s, a), 2))), DirichletL(s, chi)), Equal(a, Div(Sub(1, chi(-1)), 2)), Equal(beta, Cases(Tuple(Mul(s, Sub(s, 1)), Equal(q, 1)), Tuple(1, Otherwise)))))), Variables(q, chi, s), Assumptions(And(Element(q, ZZGreaterEqual(1)), Element(chi, PrimitiveDirichletCharacters(q)), Element(s, CC), NotElement(s, Cases(Tuple(Set(Neg(Mul(2, n)), For(n), Element(n, ZZGreaterEqual(0))), Equal(chi(-1), 1)), Tuple(Set(Sub(Neg(Mul(2, n)), 1), For(n), Element(n, ZZGreaterEqual(0))), Equal(chi(-1), -1)))), Not(And(Equal(q, 1), Equal(s, 1))))))
Fungrim symbol | Notation | Short description |
---|---|---|
GaussSum | Gq(χ) | Gauss sum |
Entry(ID("11a763"), SymbolDefinition(GaussSum, GaussSum(q, chi), "Gauss sum"))
G_{q}\!\left(\chi\right) = \sum_{n=1}^{q} \chi(n) {e}^{2 \pi i n / q} q \in \mathbb{Z}_{\ge 1} \;\mathbin{\operatorname{and}}\; \chi \in G_{q}
Fungrim symbol | Notation | Short description |
---|---|---|
GaussSum | Gq(χ) | Gauss sum |
Sum | ∑nf(n) | Sum |
Exp | ez | Exponential function |
Pi | π | The constant pi (3.14...) |
ConstI | i | Imaginary unit |
ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
DirichletGroup | Gq | Dirichlet characters with given modulus |
Entry(ID("62f12c"), Formula(Equal(GaussSum(q, chi), Sum(Mul(chi(n), Exp(Div(Mul(Mul(Mul(2, Pi), ConstI), n), q))), For(n, 1, q)))), Variables(q, chi), Assumptions(And(Element(q, ZZGreaterEqual(1)), Element(chi, DirichletGroup(q)))))
\left|G_{q}\!\left(\chi\right)\right| = \sqrt{q} q \in \mathbb{Z}_{\ge 1} \;\mathbin{\operatorname{and}}\; \chi \in G^{\text{Primitive}}_{q}
Fungrim symbol | Notation | Short description |
---|---|---|
Abs | ∣z∣ | Absolute value |
GaussSum | Gq(χ) | Gauss sum |
Sqrt | z | Principal square root |
ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
PrimitiveDirichletCharacters | GqPrimitive | Primitive Dirichlet characters with given modulus |
Entry(ID("b78a50"), Formula(Equal(Abs(GaussSum(q, chi)), Sqrt(q))), Variables(q, chi), Assumptions(And(Element(q, ZZGreaterEqual(1)), Element(chi, PrimitiveDirichletCharacters(q)))))
\Lambda\!\left(s, \chi\right) = \varepsilon \Lambda\!\left(1 - s, \overline{\chi}\right)\; \text{ where } a = \frac{1 - \chi(-1)}{2},\;\varepsilon = \frac{G_{q}\!\left(\chi\right)}{{i}^{a} \sqrt{q}} q \in \mathbb{Z}_{\ge 1} \;\mathbin{\operatorname{and}}\; \chi \in G^{\text{Primitive}}_{q} \;\mathbin{\operatorname{and}}\; s \in \mathbb{C}
Fungrim symbol | Notation | Short description |
---|---|---|
DirichletLambda | Λ(s,χ) | Completed Dirichlet L-function |
Conjugate | z | Complex conjugate |
GaussSum | Gq(χ) | Gauss sum |
Pow | ab | Power |
ConstI | i | Imaginary unit |
Sqrt | z | Principal square root |
ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
PrimitiveDirichletCharacters | GqPrimitive | Primitive Dirichlet characters with given modulus |
CC | C | Complex numbers |
Entry(ID("288207"), Formula(Equal(DirichletLambda(s, chi), Where(Mul(epsilon, DirichletLambda(Sub(1, s), Conjugate(chi))), Equal(a, Div(Sub(1, chi(-1)), 2)), Equal(epsilon, Div(GaussSum(q, chi), Mul(Pow(ConstI, a), Sqrt(q))))))), Variables(q, chi, s), Assumptions(And(Element(q, ZZGreaterEqual(1)), Element(chi, PrimitiveDirichletCharacters(q)), Element(s, CC))))
\operatorname{BranchCuts}\!\left(L\!\left(s, \chi\right), s, \mathbb{C} \cup \left\{{\tilde \infty}\right\}\right) = \left\{\right\} q \in \mathbb{Z}_{\ge 1} \;\mathbin{\operatorname{and}}\; \chi \in G_{q}
Fungrim symbol | Notation | Short description |
---|---|---|
DirichletL | L(s,χ) | Dirichlet L-function |
CC | C | Complex numbers |
UnsignedInfinity | ∞~ | Unsigned infinity |
ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
DirichletGroup | Gq | Dirichlet characters with given modulus |
Entry(ID("8533f5"), Formula(Equal(BranchCuts(DirichletL(s, chi), s, Union(CC, Set(UnsignedInfinity))), Set())), Variables(q, chi), Assumptions(And(Element(q, ZZGreaterEqual(1)), Element(chi, DirichletGroup(q)))))
\operatorname{EssentialSingularities}\!\left(L\!\left(s, \chi\right), s, \mathbb{C} \cup \left\{{\tilde \infty}\right\}\right) = \left\{{\tilde \infty}\right\} q \in \mathbb{Z}_{\ge 1} \;\mathbin{\operatorname{and}}\; \chi \in G_{q}
Fungrim symbol | Notation | Short description |
---|---|---|
DirichletL | L(s,χ) | Dirichlet L-function |
CC | C | Complex numbers |
UnsignedInfinity | ∞~ | Unsigned infinity |
ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
DirichletGroup | Gq | Dirichlet characters with given modulus |
Entry(ID("97f631"), Formula(Equal(EssentialSingularities(DirichletL(s, chi), s, Union(CC, Set(UnsignedInfinity))), Set(UnsignedInfinity))), Variables(q, chi), Assumptions(And(Element(q, ZZGreaterEqual(1)), Element(chi, DirichletGroup(q)))))
\mathop{\operatorname{poles}\,}\limits_{s \in \mathbb{C} \cup \left\{{\tilde \infty}\right\}} L\!\left(s, \chi\right) = \begin{cases} \left\{1\right\}, & \chi = \chi_{q \, . \, 1}\\\left\{\right\}, & \text{otherwise}\\ \end{cases} q \in \mathbb{Z}_{\ge 1} \;\mathbin{\operatorname{and}}\; \chi \in G_{q}
Fungrim symbol | Notation | Short description |
---|---|---|
DirichletL | L(s,χ) | Dirichlet L-function |
CC | C | Complex numbers |
UnsignedInfinity | ∞~ | Unsigned infinity |
DirichletCharacter | χq.ℓ | Dirichlet character |
ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
DirichletGroup | Gq | Dirichlet characters with given modulus |
Entry(ID("ea8c55"), Formula(Equal(Poles(DirichletL(s, chi), ForElement(s, Union(CC, Set(UnsignedInfinity)))), Cases(Tuple(Set(1), Equal(chi, DirichletCharacter(q, 1))), Tuple(Set(), Otherwise)))), Variables(q, chi), Assumptions(And(Element(q, ZZGreaterEqual(1)), Element(chi, DirichletGroup(q)))))
L\!\left(s, \chi\right) \text{ is holomorphic on } s \in \begin{cases} \mathbb{C} \setminus \left\{1\right\}, & \chi = \chi_{q \, . \, 1}\\\mathbb{C}, & \text{otherwise}\\ \end{cases} q \in \mathbb{Z}_{\ge 1} \;\mathbin{\operatorname{and}}\; \chi \in G_{q}
Fungrim symbol | Notation | Short description |
---|---|---|
IsHolomorphic | f(z) is holomorphic at z=c | Holomorphic predicate |
DirichletL | L(s,χ) | Dirichlet L-function |
CC | C | Complex numbers |
DirichletCharacter | χq.ℓ | Dirichlet character |
ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
DirichletGroup | Gq | Dirichlet characters with given modulus |
Entry(ID("fe4692"), Formula(IsHolomorphic(DirichletL(s, chi), ForElement(s, Cases(Tuple(SetMinus(CC, Set(1)), Equal(chi, DirichletCharacter(q, 1))), Tuple(CC, Otherwise))))), Variables(q, chi), Assumptions(And(Element(q, ZZGreaterEqual(1)), Element(chi, DirichletGroup(q)))))
\left|L\!\left(s, \chi\right) - \sum_{k=1}^{N - 1} \frac{\chi(k)}{{k}^{s}}\right| \le \zeta\!\left(\operatorname{Re}(s), N\right) q \in \mathbb{Z}_{\ge 1} \;\mathbin{\operatorname{and}}\; \chi \in G_{q} \;\mathbin{\operatorname{and}}\; s \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \operatorname{Re}(s) > 1 \;\mathbin{\operatorname{and}}\; N \in \mathbb{Z}_{\ge 1}
Fungrim symbol | Notation | Short description |
---|---|---|
Abs | ∣z∣ | Absolute value |
DirichletL | L(s,χ) | Dirichlet L-function |
Sum | ∑nf(n) | Sum |
Pow | ab | Power |
HurwitzZeta | ζ(s,a) | Hurwitz zeta function |
Re | Re(z) | Real part |
ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
DirichletGroup | Gq | Dirichlet characters with given modulus |
CC | C | Complex numbers |
Entry(ID("312147"), Formula(LessEqual(Abs(Sub(DirichletL(s, chi), Sum(Div(chi(k), Pow(k, s)), For(k, 1, Sub(N, 1))))), HurwitzZeta(Re(s), N))), Variables(q, chi, s, N), Assumptions(And(Element(q, ZZGreaterEqual(1)), Element(chi, DirichletGroup(q)), Element(s, CC), Greater(Re(s), 1), Element(N, ZZGreaterEqual(1)))))
\left|\frac{1}{L\!\left(s, \chi\right)} - \prod_{p < N} \left(1 - \frac{\chi(p)}{{p}^{s}}\right)\right| \le \zeta\!\left(\operatorname{Re}(s), N\right) q \in \mathbb{Z}_{\ge 1} \;\mathbin{\operatorname{and}}\; \chi \in G_{q} \;\mathbin{\operatorname{and}}\; s \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \operatorname{Re}(s) > 1 \;\mathbin{\operatorname{and}}\; N \in \mathbb{Z}_{\ge 1}
Fungrim symbol | Notation | Short description |
---|---|---|
Abs | ∣z∣ | Absolute value |
DirichletL | L(s,χ) | Dirichlet L-function |
PrimeProduct | ∏pf(p) | Product over primes |
Pow | ab | Power |
HurwitzZeta | ζ(s,a) | Hurwitz zeta function |
Re | Re(z) | Real part |
ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
DirichletGroup | Gq | Dirichlet characters with given modulus |
CC | C | Complex numbers |
Entry(ID("4911bd"), Formula(LessEqual(Abs(Sub(Div(1, DirichletL(s, chi)), PrimeProduct(Parentheses(Sub(1, Div(chi(p), Pow(p, s)))), For(p), Less(p, N)))), HurwitzZeta(Re(s), N))), Variables(q, chi, s, N), Assumptions(And(Element(q, ZZGreaterEqual(1)), Element(chi, DirichletGroup(q)), Element(s, CC), Greater(Re(s), 1), Element(N, ZZGreaterEqual(1)))))
\left|L\!\left(s, \chi\right)\right| \le \zeta\!\left(\operatorname{Re}(s)\right) q \in \mathbb{Z}_{\ge 1} \;\mathbin{\operatorname{and}}\; \chi \in G_{q} \;\mathbin{\operatorname{and}}\; s \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \operatorname{Re}(s) > 1
Fungrim symbol | Notation | Short description |
---|---|---|
Abs | ∣z∣ | Absolute value |
DirichletL | L(s,χ) | Dirichlet L-function |
RiemannZeta | ζ(s) | Riemann zeta function |
Re | Re(z) | Real part |
ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
DirichletGroup | Gq | Dirichlet characters with given modulus |
CC | C | Complex numbers |
Entry(ID("8ff1ff"), Formula(LessEqual(Abs(DirichletL(s, chi)), RiemannZeta(Re(s)))), Variables(q, chi, s), Assumptions(And(Element(q, ZZGreaterEqual(1)), Element(chi, DirichletGroup(q)), Element(s, CC), Greater(Re(s), 1))))
\left|L\!\left(s, \chi\right)\right| \le {\left(\frac{q \left|1 + s\right|}{2 \pi}\right)}^{\left( 1 + \eta - \operatorname{Re}(s) \right) / 2} \zeta\!\left(1 + \eta\right) q \in \mathbb{Z}_{\ge 2} \;\mathbin{\operatorname{and}}\; \chi \in G^{\text{Primitive}}_{q} \;\mathbin{\operatorname{and}}\; s \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \eta \in \left(0, \frac{1}{2}\right] \;\mathbin{\operatorname{and}}\; -\eta \le \operatorname{Re}(s) \le 1 + \eta
Fungrim symbol | Notation | Short description |
---|---|---|
Abs | ∣z∣ | Absolute value |
DirichletL | L(s,χ) | Dirichlet L-function |
Pow | ab | Power |
Pi | π | The constant pi (3.14...) |
Re | Re(z) | Real part |
RiemannZeta | ζ(s) | Riemann zeta function |
ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
PrimitiveDirichletCharacters | GqPrimitive | Primitive Dirichlet characters with given modulus |
CC | C | Complex numbers |
OpenClosedInterval | (a,b] | Open-closed interval |
Entry(ID("9b3fde"), Formula(LessEqual(Abs(DirichletL(s, chi)), Mul(Pow(Div(Mul(q, Abs(Add(1, s))), Mul(2, Pi)), Div(Sub(Add(1, eta), Re(s)), 2)), RiemannZeta(Add(1, eta))))), Variables(q, chi, s, eta), Assumptions(And(Element(q, ZZGreaterEqual(2)), Element(chi, PrimitiveDirichletCharacters(q)), Element(s, CC), Element(eta, OpenClosedInterval(0, Div(1, 2))), LessEqual(Neg(eta), Re(s), Add(1, eta)))), References("H. Rademacher, On the Phragmén-Lindelöf theorem and some applications, Mathematische Zeitschrift, December 1959, Volume 72, Issue 1, pp 192-204. Theorem 3. https://doi.org/10.1007/BF01162949"))
Related topics: Dirichlet characters, Riemann zeta function, Bernoulli numbers and polynomials
Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.
2021-03-15 19:12:00.328586 UTC