Fungrim home page

Fungrim entry: d088ea

L ⁣(s,χ)=p11χ(p)psL\!\left(s, \chi\right) = \prod_{p} \frac{1}{1 - \chi(p) {p}^{-s}}
Assumptions:qZ1  and  χGq  and  sC  and  Re(s)>1q \in \mathbb{Z}_{\ge 1} \;\mathbin{\operatorname{and}}\; \chi \in G_{q} \;\mathbin{\operatorname{and}}\; s \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \operatorname{Re}(s) > 1
L\!\left(s, \chi\right) = \prod_{p} \frac{1}{1 - \chi(p) {p}^{-s}}

q \in \mathbb{Z}_{\ge 1} \;\mathbin{\operatorname{and}}\; \chi \in G_{q} \;\mathbin{\operatorname{and}}\; s \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \operatorname{Re}(s) > 1
Fungrim symbol Notation Short description
DirichletLL ⁣(s,χ)L\!\left(s, \chi\right) Dirichlet L-function
PrimeProductpf(p)\prod_{p} f(p) Product over primes
Powab{a}^{b} Power
ZZGreaterEqualZn\mathbb{Z}_{\ge n} Integers greater than or equal to n
DirichletGroupGqG_{q} Dirichlet characters with given modulus
CCC\mathbb{C} Complex numbers
ReRe(z)\operatorname{Re}(z) Real part
Source code for this entry:
    Formula(Equal(DirichletL(s, chi), PrimeProduct(Div(1, Sub(1, Mul(chi(p), Pow(p, Neg(s))))), For(p)))),
    Variables(q, chi, s),
    Assumptions(And(Element(q, ZZGreaterEqual(1)), Element(chi, DirichletGroup(q)), Element(s, CC), Greater(Re(s), 1))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC