Fungrim home page

Fungrim entry: 6c3fff

L ⁣(1,χ)={~,χ=χq.1lims1L ⁣(s,χ),otherwiseL\!\left(1, \chi\right) = \begin{cases} {\tilde \infty}, & \chi = \chi_{q \, . \, 1}\\\lim_{s \to 1} L\!\left(s, \chi\right), & \text{otherwise}\\ \end{cases}
Assumptions:qZ1  and  χGqq \in \mathbb{Z}_{\ge 1} \;\mathbin{\operatorname{and}}\; \chi \in G_{q}
L\!\left(1, \chi\right) = \begin{cases} {\tilde \infty}, & \chi = \chi_{q \, . \, 1}\\\lim_{s \to 1} L\!\left(s, \chi\right), & \text{otherwise}\\ \end{cases}

q \in \mathbb{Z}_{\ge 1} \;\mathbin{\operatorname{and}}\; \chi \in G_{q}
Fungrim symbol Notation Short description
DirichletLL ⁣(s,χ)L\!\left(s, \chi\right) Dirichlet L-function
UnsignedInfinity~{\tilde \infty} Unsigned infinity
DirichletCharacterχq.\chi_{q \, . \, \ell} Dirichlet character
ComplexLimitlimzaf(z)\lim_{z \to a} f(z) Limiting value, complex variable
ZZGreaterEqualZn\mathbb{Z}_{\ge n} Integers greater than or equal to n
DirichletGroupGqG_{q} Dirichlet characters with given modulus
Source code for this entry:
    Formula(Equal(DirichletL(1, chi), Cases(Tuple(UnsignedInfinity, Equal(chi, DirichletCharacter(q, 1))), Tuple(ComplexLimit(DirichletL(s, chi), For(s, 1)), Otherwise)))),
    Variables(q, chi),
    Assumptions(And(Element(q, ZZGreaterEqual(1)), Element(chi, DirichletGroup(q)))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC