Fungrim home page

1.57079632679489661923132169164

From Ordner, a catalog of real numbers in Fungrim.

DecimalExpression [entries]Frequency
1.57079632679489661923132169164Asin(1)     [722241]
Acos(0)     [3ff35f]
Div(Pi, 2)     [47acde 0b8fd6 8ef3d7 77e519 bfc13f 8bb972 efebb8 190843 8c368f 48910b e3d274 22a9cd 0455b3 1a7e22 d418d3 69c5ef b760d1 16612f 4a5b9a 06223c 073e1a 1b881e 7ec4f0 0888b3 2b7b1d 22fb4a 473c36 51a946 f48f54 4dec89 d6415e 7295b5 f93bae 1d62a7 b7cfb3 75e141 03e2a6 937fa9 bb4501 925e5b 7fbbe8 6f3fec 2ff7e7 ace837 2f6805 60f858 2a69ce e1dd64 e2445d ec1435 dad27b 3fe553 d04a5b b62aae 752619 9a0bc8 af8328 f516e3 78fca3 cb152f d8791e 417619 c2976e b120b9 506d0c 16d2e1 a39534 8f4e31 089f85 83a535 bae475 33ee4a d0c9ff 735409 e464ec c0ad12 5e869b 15f92d fdc94c da58f7 bf8f37 2573ba 618a54 da16db 5d6f74 81fb10 21d9b8 108daa bc2f88 e7a9b1 b2fdfe f5d28c 2c26a1]
Arg(ConstI)     [735409]
EllipticE(0)     [07e35f 1d62a7]
EllipticK(0)     [ce5423 bb4501]
CarlsonRC(0, 1)     [e464ec]
Im(Log(ConstI))     [c331da]
EllipticPi(0, 0)     [618a54]
CarlsonRF(0, 1, 1)     [8bb972]
Mul(Div(1, 2), Pi)     [1a63af 461a54 c4d78a]
Atan(Pos(Infinity))     [d418d3]
Neg(Neg(Div(Pi, 2)))     [47acde 089f85 073e1a e1dd64 f516e3 7295b5 b120b9 7ec4f0 ec1435 a39534]
Neg(Div(Neg(Pi), 2))     [8f4e31 60f858 21d9b8 5e869b f48f54 06223c dec0d2 2ff7e7 33ee4a d8791e 2ef763 e2445d b7cfb3 75e141 81f7db 04c829 81fb10]
Neg(Arg(Neg(ConstI)))     [089f85]
Neg(Im(CarlsonRC(0, -1)))     [35cb93]
Im(Div(Mul(Pi, ConstI), 2))     [35cb93 a90f35 00cdb7 c331da d1a0ec 82b410]
Im(Div(Mul(ConstI, Pi), 2))     [e1dd64]
Neg(Im(CarlsonRF(0, -1, -1)))     [3a84d6]
Im(LambertW(0, Neg(Div(Pi, 2))))     [e1dd64]
IncompleteEllipticF(Div(Pi, 2), 0)     [c0ad12]
IncompleteEllipticE(Div(Pi, 2), 0)     [51a946]
Im(Mul(Mul(Div(1, 2), Pi), ConstI))     [c4d78a]
Integral(Sinc(x), For(x, 0, Infinity))     [cb152f]
Neg(Im(Div(Neg(Mul(Pi, ConstI)), 2)))     [3a84d6]
Neg(Im(Neg(Div(Mul(Pi, ConstI), 2))))     [35cb93]
Integral(Pow(Sinc(x), 2), For(x, 0, Infinity))     [1a7e22]
Hypergeometric2F1(Div(1, 2), Div(1, 2), Div(3, 2), 1)     [1448e3]
Im(Add(Log(GoldenRatio), Mul(Mul(Div(1, 2), Pi), ConstI)))     [c4d78a]
Hypergeometric2F1(Neg(Div(1, 2)), Neg(Div(1, 2)), Div(1, 2), 1)     [2a0316]
113 (#14)

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC