θ1(z,τ)=2eπiτ/4n=0∑∞(−1)nqn(n+1)sin((2n+1)πz) where q=eπiτ
Assumptions:z∈Candτ∈H
TeX:
\theta_{1}\!\left(z , \tau\right) = 2 {e}^{\pi i \tau / 4} \sum_{n=0}^{\infty} {\left(-1\right)}^{n} {q}^{n \left(n + 1\right)} \sin\!\left(\left(2 n + 1\right) \pi z\right)\; \text{ where } q = {e}^{\pi i \tau} z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \tau \in \mathbb{H}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
JacobiTheta | θj(z,τ) | Jacobi theta function |
Exp | ez | Exponential function |
Pi | π | The constant pi (3.14...) |
ConstI | i | Imaginary unit |
Sum | ∑nf(n) | Sum |
Pow | ab | Power |
Sin | sin(z) | Sine |
Infinity | ∞ | Positive infinity |
CC | C | Complex numbers |
HH | H | Upper complex half-plane |
Source code for this entry:
Entry(ID("2ba423"), Formula(Equal(JacobiTheta(1, z, tau), Where(Mul(Mul(2, Exp(Div(Mul(Mul(Pi, ConstI), tau), 4))), Sum(Mul(Mul(Pow(-1, n), Pow(q, Mul(n, Add(n, 1)))), Sin(Mul(Mul(Add(Mul(2, n), 1), Pi), z))), For(n, 0, Infinity))), Equal(q, Exp(Mul(Mul(Pi, ConstI), tau)))))), Variables(z, tau), Assumptions(And(Element(z, CC), Element(tau, HH))))