Assumptions:a∈Zandb∈Zandc∈Zandd∈Zandad−bc=1andc>0
TeX:
\varepsilon\!\left(a, b, c, d\right) = \exp\!\left(\pi i \left(\frac{a + d}{12 c} - s\!\left(d, c\right) - \frac{1}{4}\right)\right)
a \in \mathbb{Z} \,\mathbin{\operatorname{and}}\, b \in \mathbb{Z} \,\mathbin{\operatorname{and}}\, c \in \mathbb{Z} \,\mathbin{\operatorname{and}}\, d \in \mathbb{Z} \,\mathbin{\operatorname{and}}\, a d - b c = 1 \,\mathbin{\operatorname{and}}\, c \gt 0
Definitions:
Fungrim symbol | Notation | Short description |
---|
DedekindEtaEpsilon | ε(a,b,c,d)
| Root of unity in the functional equation of the Dedekind eta function |
Exp | ez
| Exponential function |
ConstPi | π
| The constant pi (3.14...) |
ConstI | i
| Imaginary unit |
DedekindSum | s(n,k)
| Dedekind sum |
ZZ | Z
| Integers |
Source code for this entry:
Entry(ID("921ef0"),
Formula(Equal(DedekindEtaEpsilon(a, b, c, d), Exp(Mul(Mul(ConstPi, ConstI), Sub(Sub(Div(Add(a, d), Mul(12, c)), DedekindSum(d, c)), Div(1, 4)))))),
Variables(a, b, c, d),
Assumptions(And(Element(a, ZZ), Element(b, ZZ), Element(c, ZZ), Element(d, ZZ), Equal(Sub(Mul(a, d), Mul(b, c)), 1), Greater(c, 0))))