Assumptions:
TeX:
s\!\left(n, k\right) = \sum_{r=1}^{k - 1} \frac{r}{k} \left(\frac{n r}{k} - \left\lfloor \frac{n r}{k} \right\rfloor - \frac{1}{2}\right) n \in \mathbb{Z} \,\mathbin{\operatorname{and}}\, k \in \mathbb{Z} \,\mathbin{\operatorname{and}}\, k \gt 0 \,\mathbin{\operatorname{and}}\, \gcd\!\left(n, k\right) = 1
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
DedekindSum | Dedekind sum | |
ZZ | Integers | |
GCD | Greatest common divisor |
Source code for this entry:
Entry(ID("23961e"), Formula(Equal(DedekindSum(n, k), Sum(Mul(Div(r, k), Sub(Sub(Div(Mul(n, r), k), Floor(Div(Mul(n, r), k))), Div(1, 2))), Tuple(r, 1, Sub(k, 1))))), Variables(n, k), Assumptions(And(Element(n, ZZ), Element(k, ZZ), Greater(k, 0), Equal(GCD(n, k), 1))))