Assumptions:
TeX:
\eta\!\left(-\frac{1}{\tau}\right) = {\left(-i \tau\right)}^{1 / 2} \eta\!\left(\tau\right)
\tau \in \mathbb{H}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| DedekindEta | Dedekind eta function | |
| Pow | Power | |
| ConstI | Imaginary unit | |
| HH | Upper complex half-plane |
Source code for this entry:
Entry(ID("3b806f"),
Formula(Equal(DedekindEta(Neg(Div(1, tau))), Mul(Pow(Neg(Mul(ConstI, tau)), Div(1, 2)), DedekindEta(tau)))),
Variables(tau),
Assumptions(Element(tau, HH)))