Assumptions:
TeX:
\eta\!\left(\tau\right) = {e}^{\pi i \tau / 12} \prod_{k=1}^{\infty} \left(1 - {e}^{2 \pi i k \tau}\right) \tau \in \mathbb{H}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
DedekindEta | Dedekind eta function | |
Exp | Exponential function | |
ConstPi | The constant pi (3.14...) | |
ConstI | Imaginary unit | |
Infinity | Positive infinity | |
HH | Upper complex half-plane |
Source code for this entry:
Entry(ID("1dc520"), Formula(Equal(DedekindEta(tau), Mul(Exp(Div(Mul(Mul(ConstPi, ConstI), tau), 12)), Product(Parentheses(Sub(1, Exp(Mul(Mul(Mul(Mul(2, ConstPi), ConstI), k), tau)))), Tuple(k, 1, Infinity))))), Variables(tau), Assumptions(Element(tau, HH)))