Assumptions:
TeX:
\varepsilon\!\left(a, b, c, d\right) = \exp\!\left(\pi i \left(\frac{a + d}{12 c} - s\!\left(d, c\right) - \frac{1}{4}\right)\right) a \in \mathbb{Z} \,\mathbin{\operatorname{and}}\, b \in \mathbb{Z} \,\mathbin{\operatorname{and}}\, c \in \mathbb{Z} \,\mathbin{\operatorname{and}}\, d \in \mathbb{Z} \,\mathbin{\operatorname{and}}\, a d - b c = 1 \,\mathbin{\operatorname{and}}\, c \gt 0
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
DedekindEtaEpsilon | Root of unity in the functional equation of the Dedekind eta function | |
Exp | Exponential function | |
ConstPi | The constant pi (3.14...) | |
ConstI | Imaginary unit | |
DedekindSum | Dedekind sum | |
ZZ | Integers |
Source code for this entry:
Entry(ID("921ef0"), Formula(Equal(DedekindEtaEpsilon(a, b, c, d), Exp(Mul(Mul(ConstPi, ConstI), Sub(Sub(Div(Add(a, d), Mul(12, c)), DedekindSum(d, c)), Div(1, 4)))))), Variables(a, b, c, d), Assumptions(And(Element(a, ZZ), Element(b, ZZ), Element(c, ZZ), Element(d, ZZ), Equal(Sub(Mul(a, d), Mul(b, c)), 1), Greater(c, 0))))