Fungrim home page

Fungrim entry: 04f4a0

Poles ⁣(η ⁣(τ),τ,H{~})={}\operatorname{Poles}\!\left(\eta\!\left(\tau\right), \tau, \mathbb{H} \cup \left\{{\tilde \infty}\right\}\right) = \left\{\right\}
TeX:
\operatorname{Poles}\!\left(\eta\!\left(\tau\right), \tau, \mathbb{H} \cup \left\{{\tilde \infty}\right\}\right) = \left\{\right\}
Definitions:
Fungrim symbol Notation Short description
DedekindEtaη ⁣(τ)\eta\!\left(\tau\right) Dedekind eta function
HHH\mathbb{H} Upper complex half-plane
UnsignedInfinity~{\tilde \infty} Unsigned infinity
Source code for this entry:
Entry(ID("04f4a0"),
    Formula(Equal(Poles(DedekindEta(tau), tau, Union(HH, Set(UnsignedInfinity))), Set())))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2019-06-18 07:49:59.356594 UTC