Assumptions:n∈Z≥1andρ∈Randρ>1andf(z) is holomorphic on z∈InteriorClosure(Eρ)
 
References:
- L. N. Trefethen, Is Gauss Quadrature Better than Clenshaw-Curtis? SIAM Rev., 50(1), 67-87. DOI:10.1137/060659831
 
TeX:
\left|\int_{-1}^{1} f(t) \, dt - \sum_{k=1}^{n} w_{n,k} f\!\left(x_{n,k}\right)\right| \le \frac{64 M}{15 \left(1 - {\rho}^{-2}\right) {\rho}^{2 n}}\; \text{ where } M = \mathop{\operatorname{sup}}\limits_{t \in \mathcal{E}_{\rho}} \left|f(t)\right|
n \in \mathbb{Z}_{\ge 1} \;\mathbin{\operatorname{and}}\; \rho \in \mathbb{R} \;\mathbin{\operatorname{and}}\; \rho > 1 \;\mathbin{\operatorname{and}}\; f(z) \text{ is holomorphic on } z \in \operatorname{InteriorClosure}\!\left(\mathcal{E}_{\rho}\right)Definitions:
| Fungrim symbol |  Notation |  Short description | 
|---|
| Abs | ∣z∣
 | Absolute value | 
| Integral | ∫abf(x)dx
 | Integral | 
| Sum | ∑nf(n)
 | Sum | 
| GaussLegendreWeight | wn,k
 | Gauss-Legendre quadrature weight | 
| LegendrePolynomialZero | xn,k
 | Legendre polynomial zero | 
| Pow | ab
 | Power | 
| Supremum | x∈Ssupf(x)
 | Supremum of a set or function | 
| BernsteinEllipse | Eρ
 | Bernstein ellipse with foci -1,+1 and semi-axis sum rho | 
| ZZGreaterEqual | Z≥n
 | Integers greater than or equal to n | 
| RR | R
 | Real numbers | 
| IsHolomorphic | f(z) is holomorphic at z=c
 | Holomorphic predicate | 
Source code for this entry:
Entry(ID("47b181"),
    Formula(Where(LessEqual(Abs(Sub(Integral(f(t), For(t, -1, 1)), Sum(Mul(GaussLegendreWeight(n, k), f(LegendrePolynomialZero(n, k))), For(k, 1, n)))), Div(Mul(64, M), Mul(Mul(15, Sub(1, Pow(rho, -2))), Pow(rho, Mul(2, n))))), Equal(M, Supremum(Abs(f(t)), ForElement(t, BernsteinEllipse(rho)))))),
    Variables(f, n, rho),
    Assumptions(And(Element(n, ZZGreaterEqual(1)), Element(rho, RR), Greater(rho, 1), IsHolomorphic(f(z), ForElement(z, InteriorClosure(BernsteinEllipse(rho)))))),
    References("L. N. Trefethen, Is Gauss Quadrature Better than Clenshaw-Curtis? SIAM Rev., 50(1), 67-87. DOI:10.1137/060659831"))