Fungrim home page

Fungrim entry: f0569a

Pn ⁣(z)=k=0n(nk)(n+kk)(z12)kP_{n}\!\left(z\right) = \sum_{k=0}^{n} {n \choose k} {n + k \choose k} {\left(\frac{z - 1}{2}\right)}^{k}
Assumptions:nZ0  and  zCn \in \mathbb{Z}_{\ge 0} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C}
P_{n}\!\left(z\right) = \sum_{k=0}^{n} {n \choose k} {n + k \choose k} {\left(\frac{z - 1}{2}\right)}^{k}

n \in \mathbb{Z}_{\ge 0} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C}
Fungrim symbol Notation Short description
LegendrePolynomialPn ⁣(z)P_{n}\!\left(z\right) Legendre polynomial
Sumnf(n)\sum_{n} f(n) Sum
Binomial(nk){n \choose k} Binomial coefficient
Powab{a}^{b} Power
ZZGreaterEqualZn\mathbb{Z}_{\ge n} Integers greater than or equal to n
CCC\mathbb{C} Complex numbers
Source code for this entry:
    Formula(Equal(LegendrePolynomial(n, z), Sum(Mul(Mul(Binomial(n, k), Binomial(Add(n, k), k)), Pow(Div(Sub(z, 1), 2), k)), For(k, 0, n)))),
    Variables(n, z),
    Assumptions(And(Element(n, ZZGreaterEqual(0)), Element(z, CC))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC