Assumptions:τ∈H
 
References:
- http://functions.wolfram.com/EllipticFunctions/DedekindEta/13/01/0001/
TeX:
\eta^{2}\!\left(\tau\right) \left(33 {\left(\eta''(\tau)\right)}^{2} + \eta(\tau) {\eta}^{(4)}(\tau)\right) - 18 {\left(\eta'(\tau)\right)}^{4} + 12 \eta(\tau) \eta''(\tau) {\left(\eta'(\tau)\right)}^{2} - 28 \eta^{2}\!\left(\tau\right) \eta'''(\tau) \eta'(\tau) = 0
\tau \in \mathbb{H}Definitions:
| Fungrim symbol | Notation | Short description | 
|---|
| Pow | ab | Power | 
| DedekindEta | η(τ) | Dedekind eta function | 
| ComplexDerivative | dzdf(z) | Complex derivative | 
| HH | H | Upper complex half-plane | 
Source code for this entry:
Entry(ID("df5f38"),
    Formula(Equal(Sub(Add(Sub(Mul(Pow(DedekindEta(tau), 2), Add(Mul(33, Pow(ComplexDerivative(DedekindEta(tau), For(tau, tau, 2)), 2)), Mul(DedekindEta(tau), ComplexDerivative(DedekindEta(tau), For(tau, tau, 4))))), Mul(18, Pow(ComplexDerivative(DedekindEta(tau), For(tau, tau)), 4))), Mul(Mul(Mul(12, DedekindEta(tau)), ComplexDerivative(DedekindEta(tau), For(tau, tau, 2))), Pow(ComplexDerivative(DedekindEta(tau), For(tau, tau)), 2))), Mul(Mul(Mul(28, Pow(DedekindEta(tau), 2)), ComplexDerivative(DedekindEta(tau), For(tau, tau, 3))), ComplexDerivative(DedekindEta(tau), For(tau, tau)))), 0)),
    Variables(tau),
    Assumptions(Element(tau, HH)),
    References("http://functions.wolfram.com/EllipticFunctions/DedekindEta/13/01/0001/"))