Assumptions:τ∈H
References:
- http://functions.wolfram.com/EllipticFunctions/DedekindEta/13/01/0001/
TeX:
\eta^{2}\!\left(\tau\right) \left(33 {\left(\eta''(\tau)\right)}^{2} + \eta(\tau) {\eta}^{(4)}(\tau)\right) - 18 {\left(\eta'(\tau)\right)}^{4} + 12 \eta(\tau) \eta''(\tau) {\left(\eta'(\tau)\right)}^{2} - 28 \eta^{2}\!\left(\tau\right) \eta'''(\tau) \eta'(\tau) = 0
\tau \in \mathbb{H}
Definitions:
Fungrim symbol | Notation | Short description |
---|
Pow | ab
| Power |
DedekindEta | η(τ)
| Dedekind eta function |
ComplexDerivative | dzdf(z)
| Complex derivative |
HH | H
| Upper complex half-plane |
Source code for this entry:
Entry(ID("df5f38"),
Formula(Equal(Sub(Add(Sub(Mul(Pow(DedekindEta(tau), 2), Add(Mul(33, Pow(ComplexDerivative(DedekindEta(tau), For(tau, tau, 2)), 2)), Mul(DedekindEta(tau), ComplexDerivative(DedekindEta(tau), For(tau, tau, 4))))), Mul(18, Pow(ComplexDerivative(DedekindEta(tau), For(tau, tau)), 4))), Mul(Mul(Mul(12, DedekindEta(tau)), ComplexDerivative(DedekindEta(tau), For(tau, tau, 2))), Pow(ComplexDerivative(DedekindEta(tau), For(tau, tau)), 2))), Mul(Mul(Mul(28, Pow(DedekindEta(tau), 2)), ComplexDerivative(DedekindEta(tau), For(tau, tau, 3))), ComplexDerivative(DedekindEta(tau), For(tau, tau)))), 0)),
Variables(tau),
Assumptions(Element(tau, HH)),
References("http://functions.wolfram.com/EllipticFunctions/DedekindEta/13/01/0001/"))