Fungrim home page

Fungrim entry: 39fb36

zerosτHη(τ)={}\mathop{\operatorname{zeros}\,}\limits_{\tau \in \mathbb{H}} \eta(\tau) = \left\{\right\}
\mathop{\operatorname{zeros}\,}\limits_{\tau \in \mathbb{H}} \eta(\tau) = \left\{\right\}
Fungrim symbol Notation Short description
ZeroszerosxSf(x)\mathop{\operatorname{zeros}\,}\limits_{x \in S} f(x) Zeros (roots) of function
DedekindEtaη(τ)\eta(\tau) Dedekind eta function
HHH\mathbb{H} Upper complex half-plane
Source code for this entry:
    Formula(Equal(Zeros(DedekindEta(tau), ForElement(tau, HH)), Set())))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC