Assumptions:x∈[0,∞)andy∈Randx+yi=0
References:
- R. B. Paris and D. Kaminski (2001), Asymptotics of Mellin-Barnes integrals, Cambridge University Press. (2.1.19), p. 34.
TeX:
\left|\Gamma\!\left(z\right)\right| \le {\left(2 \pi\right)}^{1 / 2} {\left|z\right|}^{x - 1 / 2} {e}^{-\pi \left|y\right| / 2} \exp\!\left(\frac{1}{6 \left|z\right|}\right)\; \text{ where } z = x + y i
x \in \left[0, \infty\right) \,\mathbin{\operatorname{and}}\, y \in \mathbb{R} \,\mathbin{\operatorname{and}}\, x + y i \ne 0
Definitions:
Fungrim symbol | Notation | Short description |
---|
Abs | ∣z∣
| Absolute value |
GammaFunction | Γ(z)
| Gamma function |
Pow | ab
| Power |
ConstPi | π
| The constant pi (3.14...) |
Exp | ez
| Exponential function |
ConstI | i
| Imaginary unit |
ClosedOpenInterval | [a,b)
| Closed-open interval |
Infinity | ∞
| Positive infinity |
RR | R
| Real numbers |
Source code for this entry:
Entry(ID("b7fec0"),
Formula(Where(LessEqual(Abs(GammaFunction(z)), Mul(Mul(Mul(Pow(Mul(2, ConstPi), Div(1, 2)), Pow(Abs(z), Sub(x, Div(1, 2)))), Exp(Neg(Div(Mul(ConstPi, Abs(y)), 2)))), Exp(Div(1, Mul(6, Abs(z)))))), Equal(z, Add(x, Mul(y, ConstI))))),
Variables(x, y),
Assumptions(And(Element(x, ClosedOpenInterval(0, Infinity)), Element(y, RR), Unequal(Add(x, Mul(y, ConstI)), 0))),
References("R. B. Paris and D. Kaminski (2001), Asymptotics of Mellin-Barnes integrals, Cambridge University Press. (2.1.19), p. 34."))