Assumptions:
References:
- R. B. Paris and D. Kaminski (2001), Asymptotics of Mellin-Barnes integrals, Cambridge University Press. (2.1.19), p. 34.
TeX:
\left|\Gamma\!\left(z\right)\right| \le {\left(2 \pi\right)}^{1 / 2} {\left|z\right|}^{x - 1 / 2} {e}^{-\pi \left|y\right| / 2} \exp\!\left(\frac{1}{6 \left|z\right|}\right)\; \text{ where } z = x + y i x \in \left[0, \infty\right) \,\mathbin{\operatorname{and}}\, y \in \mathbb{R} \,\mathbin{\operatorname{and}}\, x + y i \ne 0
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
Abs | Absolute value | |
GammaFunction | Gamma function | |
Pow | Power | |
ConstPi | The constant pi (3.14...) | |
Exp | Exponential function | |
ConstI | Imaginary unit | |
ClosedOpenInterval | Closed-open interval | |
Infinity | Positive infinity | |
RR | Real numbers |
Source code for this entry:
Entry(ID("b7fec0"), Formula(Where(LessEqual(Abs(GammaFunction(z)), Mul(Mul(Mul(Pow(Mul(2, ConstPi), Div(1, 2)), Pow(Abs(z), Sub(x, Div(1, 2)))), Exp(Neg(Div(Mul(ConstPi, Abs(y)), 2)))), Exp(Div(1, Mul(6, Abs(z)))))), Equal(z, Add(x, Mul(y, ConstI))))), Variables(x, y), Assumptions(And(Element(x, ClosedOpenInterval(0, Infinity)), Element(y, RR), Unequal(Add(x, Mul(y, ConstI)), 0))), References("R. B. Paris and D. Kaminski (2001), Asymptotics of Mellin-Barnes integrals, Cambridge University Press. (2.1.19), p. 34."))