Assumptions:
References:
- R. B. Paris and D. Kaminski (2001), Asymptotics of Mellin-Barnes integrals, Cambridge University Press. (2.1.18), p. 34.
TeX:
\left|\Gamma\!\left(z\right)\right| \le {\left(2 \pi\right)}^{1 / 2} \left|{z}^{z - 1 / 2} {e}^{-z}\right| \exp\!\left(\frac{1}{6 \left|z\right|}\right) z \in \mathbb{C} \,\mathbin{\operatorname{and}}\, \operatorname{Re}\!\left(z\right) \ge 0 \,\mathbin{\operatorname{and}}\, z \ne 0
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
Abs | Absolute value | |
GammaFunction | Gamma function | |
Pow | Power | |
ConstPi | The constant pi (3.14...) | |
Exp | Exponential function | |
CC | Complex numbers | |
Re | Real part |
Source code for this entry:
Entry(ID("80f7dc"), Formula(LessEqual(Abs(GammaFunction(z)), Mul(Mul(Pow(Mul(2, ConstPi), Div(1, 2)), Abs(Mul(Pow(z, Sub(z, Div(1, 2))), Exp(Neg(z))))), Exp(Div(1, Mul(6, Abs(z))))))), Variables(z), Assumptions(And(Element(z, CC), GreaterEqual(Re(z), 0), Unequal(z, 0))), References("R. B. Paris and D. Kaminski (2001), Asymptotics of Mellin-Barnes integrals, Cambridge University Press. (2.1.18), p. 34."))