Assumptions:
References:
- Abramowitz & Stegun 6.1.25
TeX:
\left|\Gamma\!\left(x + y i\right)\right| = \left|\Gamma\!\left(x\right)\right| \prod_{k=0}^{\infty} {\left(1 + \frac{{y}^{2}}{{\left(x + k\right)}^{2}}\right)}^{-1 / 2}
x \in \mathbb{R} \,\mathbin{\operatorname{and}}\, y \in \mathbb{R} \,\mathbin{\operatorname{and}}\, x + y i \notin \{0, -1, \ldots\}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| Abs | Absolute value | |
| GammaFunction | Gamma function | |
| ConstI | Imaginary unit | |
| Pow | Power | |
| Infinity | Positive infinity | |
| RR | Real numbers | |
| ZZLessEqual | Integers less than or equal to n |
Source code for this entry:
Entry(ID("513a30"),
Formula(Equal(Abs(GammaFunction(Add(x, Mul(y, ConstI)))), Mul(Abs(GammaFunction(x)), Product(Pow(Add(1, Div(Pow(y, 2), Pow(Add(x, k), 2))), Neg(Div(1, 2))), Tuple(k, 0, Infinity))))),
Variables(x, y),
Assumptions(And(Element(x, RR), Element(y, RR), NotElement(Add(x, Mul(y, ConstI)), ZZLessEqual(0)))),
References("Abramowitz & Stegun 6.1.25"))