Assumptions:
References:
- B. C. Carlson (1977), Special functions of applied mathematics, Academic Press. Inequality 3.10-4.
TeX:
\left|\Gamma\!\left(x + y i\right)\right| \ge \frac{\Gamma\!\left(x\right)}{\sqrt{\cosh\!\left(\pi y\right)}} x \in \left[\frac{1}{2}, \infty\right) \,\mathbin{\operatorname{and}}\, y \in \mathbb{R}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
Abs | Absolute value | |
GammaFunction | Gamma function | |
ConstI | Imaginary unit | |
Sqrt | Principal square root | |
ConstPi | The constant pi (3.14...) | |
ClosedOpenInterval | Closed-open interval | |
Infinity | Positive infinity | |
RR | Real numbers |
Source code for this entry:
Entry(ID("e0b322"), Formula(GreaterEqual(Abs(GammaFunction(Add(x, Mul(y, ConstI)))), Div(GammaFunction(x), Sqrt(Cosh(Mul(ConstPi, y)))))), Variables(x, y), Assumptions(And(Element(x, ClosedOpenInterval(Div(1, 2), Infinity)), Element(y, RR))), References("B. C. Carlson (1977), Special functions of applied mathematics, Academic Press. Inequality 3.10-4."))