Table of contents: Definitions - Tables - Counting - Factorization - Divisibility - Sum representations - Summation - Generating functions - Asymptotics - Bounds and inequalities
Fungrim symbol | Notation | Short description |
---|---|---|
Totient | φ(n) | Euler totient function |
Entry(ID("2c46dc"), SymbolDefinition(Totient, Totient(n), "Euler totient function"), References("http://oeis.org/A000010"))
|
|
|
|
|
Fungrim symbol | Notation | Short description |
---|---|---|
Totient | φ(n) | Euler totient function |
Entry(ID("6d37c9"), Description("Table of", Totient(n), "for", LessEqual(0, n, 100)), Table(Var(n), TableValueHeadings(n, Totient(n)), TableSplit(5), List(Tuple(0, 0), Tuple(1, 1), Tuple(2, 1), Tuple(3, 2), Tuple(4, 2), Tuple(5, 4), Tuple(6, 2), Tuple(7, 6), Tuple(8, 4), Tuple(9, 6), Tuple(10, 4), Tuple(11, 10), Tuple(12, 4), Tuple(13, 12), Tuple(14, 6), Tuple(15, 8), Tuple(16, 8), Tuple(17, 16), Tuple(18, 6), Tuple(19, 18), Tuple(20, 8), Tuple(21, 12), Tuple(22, 10), Tuple(23, 22), Tuple(24, 8), Tuple(25, 20), Tuple(26, 12), Tuple(27, 18), Tuple(28, 12), Tuple(29, 28), Tuple(30, 8), Tuple(31, 30), Tuple(32, 16), Tuple(33, 20), Tuple(34, 16), Tuple(35, 24), Tuple(36, 12), Tuple(37, 36), Tuple(38, 18), Tuple(39, 24), Tuple(40, 16), Tuple(41, 40), Tuple(42, 12), Tuple(43, 42), Tuple(44, 20), Tuple(45, 24), Tuple(46, 22), Tuple(47, 46), Tuple(48, 16), Tuple(49, 42), Tuple(50, 20), Tuple(51, 32), Tuple(52, 24), Tuple(53, 52), Tuple(54, 18), Tuple(55, 40), Tuple(56, 24), Tuple(57, 36), Tuple(58, 28), Tuple(59, 58), Tuple(60, 16), Tuple(61, 60), Tuple(62, 30), Tuple(63, 36), Tuple(64, 32), Tuple(65, 48), Tuple(66, 20), Tuple(67, 66), Tuple(68, 32), Tuple(69, 44), Tuple(70, 24), Tuple(71, 70), Tuple(72, 24), Tuple(73, 72), Tuple(74, 36), Tuple(75, 40), Tuple(76, 36), Tuple(77, 60), Tuple(78, 24), Tuple(79, 78), Tuple(80, 32), Tuple(81, 54), Tuple(82, 40), Tuple(83, 82), Tuple(84, 24), Tuple(85, 64), Tuple(86, 42), Tuple(87, 56), Tuple(88, 40), Tuple(89, 88), Tuple(90, 24), Tuple(91, 72), Tuple(92, 44), Tuple(93, 60), Tuple(94, 46), Tuple(95, 72), Tuple(96, 32), Tuple(97, 96), Tuple(98, 42), Tuple(99, 60), Tuple(100, 40))))
\varphi(n) = \# \left\{ k : k \in \{1, 2, \ldots, n\} \,\mathbin{\operatorname{and}}\, \gcd\!\left(n, k\right) = 1 \right\} n \in \mathbb{Z}_{\ge 0}
Fungrim symbol | Notation | Short description |
---|---|---|
Totient | φ(n) | Euler totient function |
Cardinality | #S | Set cardinality |
Range | {a,a+1,…,b} | Integers between given endpoints |
GCD | gcd(a,b) | Greatest common divisor |
ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
Entry(ID("c19cd6"), Formula(Equal(Totient(n), Cardinality(Set(k, ForElement(k, Range(1, n)), Equal(GCD(n, k), 1))))), Variables(n), Assumptions(Element(n, ZZGreaterEqual(0))))
\varphi(n) = n \prod_{p \mid n} \left(1 - \frac{1}{p}\right) n \in \mathbb{Z}_{\ge 1}
Fungrim symbol | Notation | Short description |
---|---|---|
Totient | φ(n) | Euler totient function |
PrimeProduct | ∏pf(p) | Product over primes |
ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
Entry(ID("b9c50f"), Formula(Equal(Totient(n), Mul(n, PrimeProduct(Parentheses(Sub(1, Div(1, p))), For(p), Divides(p, n))))), Variables(n), Assumptions(Element(n, ZZGreaterEqual(1))))
\varphi\!\left({2}^{n}\right) = {2}^{n - 1} n \in \mathbb{Z}_{\ge 1}
Fungrim symbol | Notation | Short description |
---|---|---|
Totient | φ(n) | Euler totient function |
Pow | ab | Power |
ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
Entry(ID("081abd"), Formula(Equal(Totient(Pow(2, n)), Pow(2, Sub(n, 1)))), Variables(n), Assumptions(Element(n, ZZGreaterEqual(1))))
\varphi\!\left({p}^{k}\right) = {p}^{k - 1} \left(p - 1\right) p \in \mathbb{P} \;\mathbin{\operatorname{and}}\; k \in \mathbb{Z}_{\ge 1}
Fungrim symbol | Notation | Short description |
---|---|---|
Totient | φ(n) | Euler totient function |
Pow | ab | Power |
PP | P | Prime numbers |
ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
Entry(ID("1d731f"), Formula(Equal(Totient(Pow(p, k)), Mul(Pow(p, Sub(k, 1)), Sub(p, 1)))), Variables(p, k), Assumptions(And(Element(p, PP), Element(k, ZZGreaterEqual(1)))))
\left(\gcd\!\left(m, n\right) = 1\right) \;\implies\; \left(\varphi\!\left(m n\right) = \varphi(m) \varphi(n)\right) m \in \mathbb{Z}_{\ge 0} \;\mathbin{\operatorname{and}}\; n \in \mathbb{Z}_{\ge 0}
Fungrim symbol | Notation | Short description |
---|---|---|
GCD | gcd(a,b) | Greatest common divisor |
Totient | φ(n) | Euler totient function |
ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
Entry(ID("db4763"), Formula(Implies(Equal(GCD(m, n), 1), Equal(Totient(Mul(m, n)), Mul(Totient(m), Totient(n))))), Variables(m, n), Assumptions(And(Element(m, ZZGreaterEqual(0)), Element(n, ZZGreaterEqual(0)))))
\varphi\!\left(m n\right) = \frac{\varphi(m) \varphi(n) \gcd\!\left(m, n\right)}{\varphi\!\left(\gcd\!\left(m, n\right)\right)} m \in \mathbb{Z}_{\ge 1} \;\mathbin{\operatorname{and}}\; n \in \mathbb{Z}_{\ge 1}
Fungrim symbol | Notation | Short description |
---|---|---|
Totient | φ(n) | Euler totient function |
GCD | gcd(a,b) | Greatest common divisor |
ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
Entry(ID("56d7fe"), Formula(Equal(Totient(Mul(m, n)), Div(Mul(Mul(Totient(m), Totient(n)), GCD(m, n)), Totient(GCD(m, n))))), Variables(m, n), Assumptions(And(Element(m, ZZGreaterEqual(1)), Element(n, ZZGreaterEqual(1)))))
\varphi\!\left({m}^{n}\right) = {m}^{n - 1} \varphi(m) m \in \mathbb{Z}_{\ge 0} \;\mathbin{\operatorname{and}}\; n \in \mathbb{Z}_{\ge 1}
Fungrim symbol | Notation | Short description |
---|---|---|
Totient | φ(n) | Euler totient function |
Pow | ab | Power |
ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
Entry(ID("05e9ae"), Formula(Equal(Totient(Pow(m, n)), Mul(Pow(m, Sub(n, 1)), Totient(m)))), Variables(m, n), Assumptions(And(Element(m, ZZGreaterEqual(0)), Element(n, ZZGreaterEqual(1)))))
\varphi\!\left(2 n\right) = \begin{cases} 2 \varphi(n), & n \text{ even}\\\varphi(n), & n \text{ odd}\\ \end{cases} n \in \mathbb{Z}_{\ge 0}
Fungrim symbol | Notation | Short description |
---|---|---|
Totient | φ(n) | Euler totient function |
ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
Entry(ID("c0e088"), Formula(Equal(Totient(Mul(2, n)), Cases(Tuple(Mul(2, Totient(n)), Even(n)), Tuple(Totient(n), Odd(n))))), Variables(n), Assumptions(Element(n, ZZGreaterEqual(0))))
\varphi\!\left(\prod_{k=1}^{m} p_{k}^{{e}_{k}}\right) = \prod_{k=1}^{m} \varphi\!\left(p_{k}^{{e}_{k}}\right) {e}_{k} \in \mathbb{Z}_{\ge 0} \;\mathbin{\operatorname{and}}\; m \in \mathbb{Z}_{\ge 0}
Fungrim symbol | Notation | Short description |
---|---|---|
Totient | φ(n) | Euler totient function |
Product | ∏nf(n) | Product |
Pow | ab | Power |
PrimeNumber | pn | nth prime number |
ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
Entry(ID("b9c36d"), Formula(Equal(Totient(Product(Pow(PrimeNumber(k), Subscript(e, k)), For(k, 1, m))), Product(Totient(Pow(PrimeNumber(k), Subscript(e, k))), For(k, 1, m)))), Variables(e, m), Assumptions(And(Element(Subscript(e, k), ZZGreaterEqual(0)), Element(m, ZZGreaterEqual(0)))))
\varphi\!\left(\operatorname{lcm}\!\left(m, n\right)\right) \varphi\!\left(\gcd\!\left(m, n\right)\right) = \varphi(m) \varphi(n) m \in \mathbb{Z}_{\ge 0} \;\mathbin{\operatorname{and}}\; n \in \mathbb{Z}_{\ge 0}
Fungrim symbol | Notation | Short description |
---|---|---|
Totient | φ(n) | Euler totient function |
LCM | lcm(a,b) | Least common multiple |
GCD | gcd(a,b) | Greatest common divisor |
ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
Entry(ID("d1ea57"), Formula(Equal(Mul(Totient(LCM(m, n)), Totient(GCD(m, n))), Mul(Totient(m), Totient(n)))), Variables(m, n), Assumptions(And(Element(m, ZZGreaterEqual(0)), Element(n, ZZGreaterEqual(0)))))
\varphi\!\left(-n\right) = \varphi(n) n \in \mathbb{Z}
Fungrim symbol | Notation | Short description |
---|---|---|
Totient | φ(n) | Euler totient function |
ZZ | Z | Integers |
Entry(ID("11a56b"), Formula(Equal(Totient(Neg(n)), Totient(n))), Variables(n), Assumptions(Element(n, ZZ)))
\begin{cases} \varphi(n) \text{ odd}, & n \in \left\{1, 2\right\}\\\varphi(n) \text{ even}, & \text{otherwise}\\ \end{cases} n \in \mathbb{Z}_{\ge 0}
Fungrim symbol | Notation | Short description |
---|---|---|
Totient | φ(n) | Euler totient function |
ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
Entry(ID("f0639c"), Formula(Cases(Tuple(Odd(Totient(n)), Element(n, Set(1, 2))), Tuple(Even(Totient(n)), Otherwise))), Variables(n), Assumptions(Element(n, ZZGreaterEqual(0))))
\left(m \mid n\right) \;\implies\; \left(\varphi(m) \mid \varphi(n)\right) m \in \mathbb{Z}_{\ge 0} \;\mathbin{\operatorname{and}}\; n \in \mathbb{Z}_{\ge 0}
Fungrim symbol | Notation | Short description |
---|---|---|
Totient | φ(n) | Euler totient function |
ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
Entry(ID("eae0de"), Formula(Implies(Divides(m, n), Divides(Totient(m), Totient(n)))), Variables(m, n), Assumptions(And(Element(m, ZZGreaterEqual(0)), Element(n, ZZGreaterEqual(0)))))
n \mid \varphi\!\left({m}^{n} - 1\right) m \in \mathbb{Z}_{\ge 1} \;\mathbin{\operatorname{and}}\; n \in \mathbb{Z}_{\ge 1}
Fungrim symbol | Notation | Short description |
---|---|---|
Totient | φ(n) | Euler totient function |
Pow | ab | Power |
ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
Entry(ID("8f51dd"), Formula(Divides(n, Totient(Sub(Pow(m, n), 1)))), Variables(m, n), Assumptions(And(Element(m, ZZGreaterEqual(1)), Element(n, ZZGreaterEqual(1)))))
{a}^{\varphi(n)} \equiv 1 \pmod {n} a \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; n \in \mathbb{Z}_{\ge 1} \;\mathbin{\operatorname{and}}\; \gcd\!\left(a, n\right) = 1
Fungrim symbol | Notation | Short description |
---|---|---|
Pow | ab | Power |
Totient | φ(n) | Euler totient function |
ZZ | Z | Integers |
ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
GCD | gcd(a,b) | Greatest common divisor |
Entry(ID("a68214"), Formula(CongruentMod(Pow(a, Totient(n)), 1, n)), Variables(a, n), Assumptions(And(Element(a, ZZ), Element(n, ZZGreaterEqual(1)), Equal(GCD(a, n), 1))))
\left(x \equiv y \pmod {\varphi(n)}\right) \;\implies\; \left({a}^{x} \equiv {a}^{y} \pmod {n}\right) a \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; n \in \mathbb{Z}_{\ge 1} \;\mathbin{\operatorname{and}}\; \gcd\!\left(a, n\right) = 1 \;\mathbin{\operatorname{and}}\; x \in \mathbb{Z}_{\ge 0} \;\mathbin{\operatorname{and}}\; y \in \mathbb{Z}_{\ge 0}
Fungrim symbol | Notation | Short description |
---|---|---|
Totient | φ(n) | Euler totient function |
Pow | ab | Power |
ZZ | Z | Integers |
ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
GCD | gcd(a,b) | Greatest common divisor |
Entry(ID("36fe36"), Formula(Implies(CongruentMod(x, y, Totient(n)), CongruentMod(Pow(a, x), Pow(a, y), n))), Variables(a, x, y, n), Assumptions(And(Element(a, ZZ), Element(n, ZZGreaterEqual(1)), Equal(GCD(a, n), 1), Element(x, ZZGreaterEqual(0)), Element(y, ZZGreaterEqual(0)))))
\varphi(n) = \sum_{k=1}^{n} \gcd\!\left(n, k\right) {e}^{2 \pi i k / n} n \in \mathbb{Z}_{\ge 0}
Fungrim symbol | Notation | Short description |
---|---|---|
Totient | φ(n) | Euler totient function |
Sum | ∑nf(n) | Sum |
GCD | gcd(a,b) | Greatest common divisor |
Exp | ez | Exponential function |
Pi | π | The constant pi (3.14...) |
ConstI | i | Imaginary unit |
ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
Entry(ID("3f5711"), Formula(Equal(Totient(n), Sum(Mul(GCD(n, k), Exp(Div(Mul(Mul(Mul(2, Pi), ConstI), k), n))), For(k, 1, n)))), Variables(n), Assumptions(Element(n, ZZGreaterEqual(0))))
\varphi(n) = \sum_{k=1}^{n} \gcd\!\left(n, k\right) \cos\!\left(\frac{2 \pi k}{n}\right) n \in \mathbb{Z}_{\ge 0}
Fungrim symbol | Notation | Short description |
---|---|---|
Totient | φ(n) | Euler totient function |
Sum | ∑nf(n) | Sum |
GCD | gcd(a,b) | Greatest common divisor |
Cos | cos(z) | Cosine |
Pi | π | The constant pi (3.14...) |
ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
Entry(ID("93a877"), Formula(Equal(Totient(n), Sum(Mul(GCD(n, k), Cos(Div(Mul(Mul(2, Pi), k), n))), For(k, 1, n)))), Variables(n), Assumptions(Element(n, ZZGreaterEqual(0))))
\varphi(n) = \sum_{d \mid n} \mu(d) \frac{n}{d} n \in \mathbb{Z}_{\ge 0}
Fungrim symbol | Notation | Short description |
---|---|---|
Totient | φ(n) | Euler totient function |
DivisorSum | ∑k∣nf(k) | Sum over divisors |
MoebiusMu | μ(n) | Möbius function |
ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
Entry(ID("efd378"), Formula(Equal(Totient(n), DivisorSum(Mul(MoebiusMu(d), Div(n, d)), For(d, n)))), Variables(n), Assumptions(Element(n, ZZGreaterEqual(0))))
\varphi(n) = \sum_{k=1}^{n} \begin{cases} 1, & \gcd\!\left(n, k\right) = 1\\0, & \text{otherwise}\\ \end{cases} n \in \mathbb{Z}_{\ge 0}
Fungrim symbol | Notation | Short description |
---|---|---|
Totient | φ(n) | Euler totient function |
Sum | ∑nf(n) | Sum |
GCD | gcd(a,b) | Greatest common divisor |
ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
Entry(ID("91f156"), Formula(Equal(Totient(n), Sum(Cases(Tuple(1, Equal(GCD(n, k), 1)), Tuple(0, Otherwise)), For(k, 1, n)))), Variables(n), Assumptions(Element(n, ZZGreaterEqual(0))))
\varphi(n) = \frac{2}{n} \sum_{k=1}^{n} \begin{cases} k, & \gcd\!\left(n, k\right) = 1\\0, & \text{otherwise}\\ \end{cases} n \in \mathbb{Z}_{\ge 2}
Fungrim symbol | Notation | Short description |
---|---|---|
Totient | φ(n) | Euler totient function |
Sum | ∑nf(n) | Sum |
GCD | gcd(a,b) | Greatest common divisor |
ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
Entry(ID("bb4ce0"), Formula(Equal(Totient(n), Mul(Div(2, n), Sum(Cases(Tuple(k, Equal(GCD(n, k), 1)), Tuple(0, Otherwise)), For(k, 1, n))))), Variables(n), Assumptions(Element(n, ZZGreaterEqual(2))))
\varphi(n) \sigma_{0}\!\left(n\right) = \sum_{k=1}^{n} \begin{cases} \gcd\!\left(n, k - 1\right), & \gcd\!\left(n, k\right) = 1\\0, & \text{otherwise}\\ \end{cases} n \in \mathbb{Z}_{\ge 0}
Fungrim symbol | Notation | Short description |
---|---|---|
Totient | φ(n) | Euler totient function |
DivisorSigma | σk(n) | Sum of divisors function |
Sum | ∑nf(n) | Sum |
GCD | gcd(a,b) | Greatest common divisor |
ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
Entry(ID("a08583"), Formula(Equal(Mul(Totient(n), DivisorSigma(0, n)), Sum(Cases(Tuple(GCD(n, Sub(k, 1)), Equal(GCD(n, k), 1)), Tuple(0, Otherwise)), For(k, 1, n)))), Variables(n), Assumptions(Element(n, ZZGreaterEqual(0))), Description("Menon's identity"))
\varphi(n) = n - \sum_{d \mid n,\, d < n} \varphi(d) n \in \mathbb{Z}_{\ge 0}
Fungrim symbol | Notation | Short description |
---|---|---|
Totient | φ(n) | Euler totient function |
DivisorSum | ∑k∣nf(k) | Sum over divisors |
ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
Entry(ID("08ff0b"), Formula(Equal(Totient(n), Sub(n, DivisorSum(Totient(d), For(d, n), Less(d, n))))), Variables(n), Assumptions(Element(n, ZZGreaterEqual(0))))
\sum_{d \mid n} \varphi(d) = n n \in \mathbb{Z}_{\ge 0}
Fungrim symbol | Notation | Short description |
---|---|---|
DivisorSum | ∑k∣nf(k) | Sum over divisors |
Totient | φ(n) | Euler totient function |
ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
Entry(ID("cdd7e7"), Formula(Equal(DivisorSum(Totient(d), For(d, n)), n)), Variables(n), Assumptions(Element(n, ZZGreaterEqual(0))))
\sum_{d \mid n} \varphi(d) d = \left(\frac{2}{n} \sum_{k=1}^{n} \operatorname{lcm}\!\left(n, k\right)\right) - 1 n \in \mathbb{Z}_{\ge 0}
Fungrim symbol | Notation | Short description |
---|---|---|
DivisorSum | ∑k∣nf(k) | Sum over divisors |
Totient | φ(n) | Euler totient function |
Sum | ∑nf(n) | Sum |
LCM | lcm(a,b) | Least common multiple |
ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
Entry(ID("90bb4a"), Formula(Equal(DivisorSum(Mul(Totient(d), d), For(d, n)), Sub(Parentheses(Mul(Div(2, n), Sum(LCM(n, k), For(k, 1, n)))), 1))), Variables(n), Assumptions(Element(n, ZZGreaterEqual(0))))
\sum_{d \mid n} \varphi(d) \frac{n}{d} = \sum_{k=1}^{n} \gcd\!\left(n, k\right) n \in \mathbb{Z}_{\ge 0}
Fungrim symbol | Notation | Short description |
---|---|---|
DivisorSum | ∑k∣nf(k) | Sum over divisors |
Totient | φ(n) | Euler totient function |
Sum | ∑nf(n) | Sum |
GCD | gcd(a,b) | Greatest common divisor |
ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
Entry(ID("0fdb94"), Formula(Equal(DivisorSum(Mul(Totient(d), Div(n, d)), For(d, n)), Sum(GCD(n, k), For(k, 1, n)))), Variables(n), Assumptions(Element(n, ZZGreaterEqual(0))))
\sum_{d \mid n} \varphi(d) \sigma_{k}\!\left(\frac{n}{d}\right) = n \sigma_{k - 1}\!\left(n\right) k \in \mathbb{Z}_{\ge 1} \;\mathbin{\operatorname{and}}\; n \in \mathbb{Z}_{\ge 0}
Fungrim symbol | Notation | Short description |
---|---|---|
DivisorSum | ∑k∣nf(k) | Sum over divisors |
Totient | φ(n) | Euler totient function |
DivisorSigma | σk(n) | Sum of divisors function |
ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
Entry(ID("a05466"), Formula(Equal(DivisorSum(Mul(Totient(d), DivisorSigma(k, Div(n, d))), For(d, n)), Mul(n, DivisorSigma(Sub(k, 1), n)))), Variables(k, n), Assumptions(And(Element(k, ZZGreaterEqual(1)), Element(n, ZZGreaterEqual(0)))))
\sum_{k=1}^{n} \varphi(k) \left\lfloor \frac{n}{k} \right\rfloor = \frac{n \left(n + 1\right)}{2} n \in \mathbb{Z}_{\ge 0}
Fungrim symbol | Notation | Short description |
---|---|---|
Sum | ∑nf(n) | Sum |
Totient | φ(n) | Euler totient function |
ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
Entry(ID("ea27a7"), Formula(Equal(Sum(Mul(Totient(k), Floor(Div(n, k))), For(k, 1, n)), Div(Mul(n, Add(n, 1)), 2))), Variables(n), Assumptions(Element(n, ZZGreaterEqual(0))))
\sum_{n=1}^{\infty} \frac{\varphi(n)}{{n}^{s}} = \frac{\zeta\!\left(s - 1\right)}{\zeta\!\left(s\right)} s \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \operatorname{Re}(s) > 2
Fungrim symbol | Notation | Short description |
---|---|---|
Sum | ∑nf(n) | Sum |
Totient | φ(n) | Euler totient function |
Pow | ab | Power |
Infinity | ∞ | Positive infinity |
RiemannZeta | ζ(s) | Riemann zeta function |
CC | C | Complex numbers |
Re | Re(z) | Real part |
Entry(ID("1a907e"), Formula(Equal(Sum(Div(Totient(n), Pow(n, s)), For(n, 1, Infinity)), Div(RiemannZeta(Sub(s, 1)), RiemannZeta(s)))), Variables(s), Assumptions(And(Element(s, CC), Greater(Re(s), 2))))
\sum_{n=1}^{\infty} \frac{\varphi(n) {q}^{n}}{1 - {q}^{n}} = \frac{q}{{\left(1 - q\right)}^{2}} q \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \left|q\right| < 1
Fungrim symbol | Notation | Short description |
---|---|---|
Sum | ∑nf(n) | Sum |
Totient | φ(n) | Euler totient function |
Pow | ab | Power |
Infinity | ∞ | Positive infinity |
CC | C | Complex numbers |
Abs | ∣z∣ | Absolute value |
Entry(ID("7f5468"), Formula(Equal(Sum(Div(Mul(Totient(n), Pow(q, n)), Sub(1, Pow(q, n))), For(n, 1, Infinity)), Div(q, Pow(Sub(1, q), 2)))), Variables(q), Assumptions(And(Element(q, CC), Less(Abs(q), 1))))
\sum_{n=1}^{\infty} \frac{\varphi(n)}{n} \log\!\left(1 - {x}^{n}\right) = \frac{x}{x - 1} x \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \left|x\right| < 1
Fungrim symbol | Notation | Short description |
---|---|---|
Sum | ∑nf(n) | Sum |
Totient | φ(n) | Euler totient function |
Log | log(z) | Natural logarithm |
Pow | ab | Power |
Infinity | ∞ | Positive infinity |
CC | C | Complex numbers |
Abs | ∣z∣ | Absolute value |
Entry(ID("a9a405"), Formula(Equal(Sum(Mul(Div(Totient(n), n), Log(Sub(1, Pow(x, n)))), For(n, 1, Infinity)), Div(x, Sub(x, 1)))), Variables(x), Assumptions(And(Element(x, CC), Less(Abs(x), 1))))
\limsup_{n \to \infty} \frac{\varphi(n)}{n} = 1
Fungrim symbol | Notation | Short description |
---|---|---|
SequenceLimitSuperior | n→alimsupf(n) | Limit superior of sequence |
Totient | φ(n) | Euler totient function |
Infinity | ∞ | Positive infinity |
Entry(ID("cd7877"), Formula(Equal(SequenceLimitSuperior(Div(Totient(n), n), For(n, Infinity)), 1)))
\liminf_{n \to \infty} \frac{\varphi(n) \log\!\left(\log(n)\right)}{n} = {e}^{-\gamma}
Fungrim symbol | Notation | Short description |
---|---|---|
SequenceLimitInferior | n→aliminff(n) | Limit inferior of sequence |
Totient | φ(n) | Euler totient function |
Log | log(z) | Natural logarithm |
Infinity | ∞ | Positive infinity |
Exp | ez | Exponential function |
ConstGamma | γ | The constant gamma (0.577...) |
Entry(ID("acfc1f"), Formula(Equal(SequenceLimitInferior(Div(Mul(Totient(n), Log(Log(n))), n), For(n, Infinity)), Exp(Neg(ConstGamma)))))
\lim_{n \to \infty} \frac{\varphi(n)}{{n}^{1 - \delta}} = \infty \delta \in \left(0, \infty\right)
Fungrim symbol | Notation | Short description |
---|---|---|
SequenceLimit | limn→af(n) | Limiting value of sequence |
Totient | φ(n) | Euler totient function |
Pow | ab | Power |
Infinity | ∞ | Positive infinity |
OpenInterval | (a,b) | Open interval |
Entry(ID("4b5b44"), Formula(Equal(SequenceLimit(Div(Totient(n), Pow(n, Sub(1, delta))), For(n, Infinity)), Infinity)), Variables(delta), Assumptions(Element(delta, OpenInterval(0, Infinity))))
\liminf_{n \to \infty} \frac{\varphi\!\left(n + 1\right)}{\varphi(n)} = 0
Fungrim symbol | Notation | Short description |
---|---|---|
SequenceLimitInferior | n→aliminff(n) | Limit inferior of sequence |
Totient | φ(n) | Euler totient function |
Infinity | ∞ | Positive infinity |
Entry(ID("33139b"), Formula(Equal(SequenceLimitInferior(Div(Totient(Add(n, 1)), Totient(n)), For(n, Infinity)), 0)))
\limsup_{n \to \infty} \frac{\varphi\!\left(n + 1\right)}{\varphi(n)} = \infty
Fungrim symbol | Notation | Short description |
---|---|---|
SequenceLimitSuperior | n→alimsupf(n) | Limit superior of sequence |
Totient | φ(n) | Euler totient function |
Infinity | ∞ | Positive infinity |
Entry(ID("feb1a0"), Formula(Equal(SequenceLimitSuperior(Div(Totient(Add(n, 1)), Totient(n)), For(n, Infinity)), Infinity)))
\lim_{N \to \infty} \frac{1}{{N}^{2}} \sum_{n=1}^{N} \varphi(n) = \frac{3}{{\pi}^{2}}
Fungrim symbol | Notation | Short description |
---|---|---|
SequenceLimit | limn→af(n) | Limiting value of sequence |
Pow | ab | Power |
Sum | ∑nf(n) | Sum |
Totient | φ(n) | Euler totient function |
Infinity | ∞ | Positive infinity |
Pi | π | The constant pi (3.14...) |
Entry(ID("8d7b3d"), Formula(Equal(SequenceLimit(Mul(Div(1, Pow(N, 2)), Sum(Totient(n), For(n, 1, N))), For(N, Infinity)), Div(3, Pow(Pi, 2)))))
\lim_{N \to \infty} \frac{1}{\log(N)} \sum_{n=1}^{N} \frac{1}{\varphi(n)} = \frac{\zeta\!\left(2\right) \zeta\!\left(3\right)}{\zeta\!\left(6\right)}
Fungrim symbol | Notation | Short description |
---|---|---|
SequenceLimit | limn→af(n) | Limiting value of sequence |
Log | log(z) | Natural logarithm |
Sum | ∑nf(n) | Sum |
Totient | φ(n) | Euler totient function |
Infinity | ∞ | Positive infinity |
RiemannZeta | ζ(s) | Riemann zeta function |
Entry(ID("9923b7"), Formula(Equal(SequenceLimit(Mul(Div(1, Log(N)), Sum(Div(1, Totient(n)), For(n, 1, N))), For(N, Infinity)), Div(Mul(RiemannZeta(2), RiemannZeta(3)), RiemannZeta(6)))))
\varphi(n) \le n n \in \mathbb{Z}_{\ge 0}
Fungrim symbol | Notation | Short description |
---|---|---|
Totient | φ(n) | Euler totient function |
ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
Entry(ID("e3005f"), Formula(LessEqual(Totient(n), n)), Variables(n), Assumptions(Element(n, ZZGreaterEqual(0))))
\varphi(n) \le n - 1 n \in \mathbb{Z}_{\ge 2}
Fungrim symbol | Notation | Short description |
---|---|---|
Totient | φ(n) | Euler totient function |
ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
Entry(ID("485ab6"), Formula(LessEqual(Totient(n), Sub(n, 1))), Variables(n), Assumptions(Element(n, ZZGreaterEqual(2))))
\varphi(n) \ge \sqrt{n} n \in \mathbb{Z}_{\ge 7}
Fungrim symbol | Notation | Short description |
---|---|---|
Totient | φ(n) | Euler totient function |
Sqrt | z | Principal square root |
ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
Entry(ID("d0b5a7"), Formula(GreaterEqual(Totient(n), Sqrt(n))), Variables(n), Assumptions(Element(n, ZZGreaterEqual(7))))
\left(n \notin \mathbb{P}\right) \;\implies\; \left(\varphi(n) \le n - \sqrt{n}\right) n \in \mathbb{Z}_{\ge 2}
Fungrim symbol | Notation | Short description |
---|---|---|
PP | P | Prime numbers |
Totient | φ(n) | Euler totient function |
Sqrt | z | Principal square root |
ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
Entry(ID("b81b45"), Formula(Implies(NotElement(n, PP), LessEqual(Totient(n), Sub(n, Sqrt(n))))), Variables(n), Assumptions(Element(n, ZZGreaterEqual(2))))
\varphi\!\left(m n\right) \le m \varphi(n) m \in \mathbb{Z}_{\ge 0} \;\mathbin{\operatorname{and}}\; n \in \mathbb{Z}_{\ge 0}
Fungrim symbol | Notation | Short description |
---|---|---|
Totient | φ(n) | Euler totient function |
ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
Entry(ID("08fb81"), Formula(LessEqual(Totient(Mul(m, n)), Mul(m, Totient(n)))), Variables(m, n), Assumptions(And(Element(m, ZZGreaterEqual(0)), Element(n, ZZGreaterEqual(0)))))
\varphi(m) \varphi(n) \le \varphi\!\left(m n\right) m \in \mathbb{Z}_{\ge 0} \;\mathbin{\operatorname{and}}\; n \in \mathbb{Z}_{\ge 0}
Fungrim symbol | Notation | Short description |
---|---|---|
Totient | φ(n) | Euler totient function |
ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
Entry(ID("775e10"), Formula(LessEqual(Mul(Totient(m), Totient(n)), Totient(Mul(m, n)))), Variables(m, n), Assumptions(And(Element(m, ZZGreaterEqual(0)), Element(n, ZZGreaterEqual(0)))))
\varphi(n) > \frac{n}{{e}^{\gamma} \log\!\left(\log(n)\right) + \frac{2.50637}{\log\!\left(\log(n)\right)}} n \in \mathbb{Z}_{\ge 3}
Fungrim symbol | Notation | Short description |
---|---|---|
Totient | φ(n) | Euler totient function |
Exp | ez | Exponential function |
ConstGamma | γ | The constant gamma (0.577...) |
Log | log(z) | Natural logarithm |
ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
Entry(ID("433a5c"), Formula(Greater(Totient(n), Div(n, Add(Mul(Exp(ConstGamma), Log(Log(n))), Div(Decimal("2.50637"), Log(Log(n))))))), Variables(n), Assumptions(Element(n, ZZGreaterEqual(3))))
\# \left\{ n : n \in \mathbb{Z}_{\ge 1} \,\mathbin{\operatorname{and}}\, \varphi(n) < \frac{n}{{e}^{\gamma} \log\!\left(\log(n)\right)} \right\} \# \mathbb{Z}
Fungrim symbol | Notation | Short description |
---|---|---|
Cardinality | #S | Set cardinality |
ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
Totient | φ(n) | Euler totient function |
Exp | ez | Exponential function |
ConstGamma | γ | The constant gamma (0.577...) |
Log | log(z) | Natural logarithm |
ZZ | Z | Integers |
Entry(ID("86fcf1"), Formula(Equal(Cardinality(Set(n, ForElement(n, ZZGreaterEqual(1)), Less(Totient(n), Div(n, Mul(Exp(ConstGamma), Log(Log(n)))))))), Cardinality(ZZ)))
\varphi(n) \sigma_{1}\!\left(n\right) < {n}^{2} n \in \mathbb{Z}_{\ge 2}
Fungrim symbol | Notation | Short description |
---|---|---|
Totient | φ(n) | Euler totient function |
DivisorSigma | σk(n) | Sum of divisors function |
Pow | ab | Power |
ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
Entry(ID("acb28a"), Formula(Less(Mul(Totient(n), DivisorSigma(1, n)), Pow(n, 2))), Variables(n), Assumptions(Element(n, ZZGreaterEqual(2))), References("G. H. Hardy and E. M. Wright (1979), An Introduction to the Theory of Numbers (Fifth ed.), Oxford University Press. Theorem 327."))
\varphi(n) \sigma_{1}\!\left(n\right) > \frac{6}{{\pi}^{2}} {n}^{2} n \in \mathbb{Z}_{\ge 1}
Fungrim symbol | Notation | Short description |
---|---|---|
Totient | φ(n) | Euler totient function |
DivisorSigma | σk(n) | Sum of divisors function |
Pow | ab | Power |
Pi | π | The constant pi (3.14...) |
ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
Entry(ID("0477b3"), Formula(Greater(Mul(Totient(n), DivisorSigma(1, n)), Mul(Div(6, Pow(Pi, 2)), Pow(n, 2)))), Variables(n), Assumptions(Element(n, ZZGreaterEqual(1))), References("G. H. Hardy and E. M. Wright (1979), An Introduction to the Theory of Numbers (Fifth ed.), Oxford University Press. Theorem 327."))
Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.
2021-03-15 19:12:00.328586 UTC