Assumptions:z∈Candz∈/Z
TeX:
\log G\!\left(1 - z\right) = \log G\!\left(1 + z\right) - \log\!\left(2 \pi\right) z + \begin{cases} \int_{0}^{i} \pi x \cot\!\left(\pi x\right) \, dx + \int_{i}^{z} \pi x \cot\!\left(\pi x\right) \, dx, & -1 < \operatorname{Re}(z) < 1 \;\mathbin{\operatorname{or}}\; \operatorname{Im}(z) > 0 \;\mathbin{\operatorname{or}}\; \left(\operatorname{Im}(z) = 0 \;\mathbin{\operatorname{and}}\; \operatorname{Re}(z) < 1\right)\\\int_{0}^{-i} \pi x \cot\!\left(\pi x\right) \, dx + \int_{-i}^{z} \pi x \cot\!\left(\pi x\right) \, dx, & -1 < \operatorname{Re}(z) < 1 \;\mathbin{\operatorname{or}}\; \operatorname{Im}(z) < 0 \;\mathbin{\operatorname{or}}\; \left(\operatorname{Im}(z) = 0 \;\mathbin{\operatorname{and}}\; \operatorname{Re}(z) > -1\right)\\ \end{cases}
z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; z \notin \mathbb{Z}
Definitions:
Fungrim symbol | Notation | Short description |
---|
LogBarnesG | logG(z)
| Logarithmic Barnes G-function |
Log | log(z)
| Natural logarithm |
Pi | π
| The constant pi (3.14...) |
Integral | ∫abf(x)dx
| Integral |
ConstI | i
| Imaginary unit |
Re | Re(z)
| Real part |
Im | Im(z)
| Imaginary part |
CC | C
| Complex numbers |
ZZ | Z
| Integers |
Source code for this entry:
Entry(ID("23ed69"),
Formula(Equal(LogBarnesG(Sub(1, z)), Add(Sub(LogBarnesG(Add(1, z)), Mul(Log(Mul(2, Pi)), z)), Cases(Tuple(Add(Integral(Mul(Mul(Pi, x), Cot(Mul(Pi, x))), For(x, 0, ConstI)), Integral(Mul(Mul(Pi, x), Cot(Mul(Pi, x))), For(x, ConstI, z))), Or(Less(-1, Re(z), 1), Greater(Im(z), 0), And(Equal(Im(z), 0), Less(Re(z), 1)))), Tuple(Add(Integral(Mul(Mul(Pi, x), Cot(Mul(Pi, x))), For(x, 0, Neg(ConstI))), Integral(Mul(Mul(Pi, x), Cot(Mul(Pi, x))), For(x, Neg(ConstI), z))), Or(Less(-1, Re(z), 1), Less(Im(z), 0), And(Equal(Im(z), 0), Greater(Re(z), -1)))))))),
Variables(z),
Assumptions(And(Element(z, CC), NotElement(z, ZZ))))