Fungrim home page

Fungrim entry: daef08

logG(n)={log ⁣(G(n)),n1,n0\log G(n) = \begin{cases} \log\!\left(G(n)\right), & n \ge 1\\-\infty, & n \le 0\\ \end{cases}
Assumptions:nZn \in \mathbb{Z}
\log G(n) = \begin{cases} \log\!\left(G(n)\right), & n \ge 1\\-\infty, & n \le 0\\ \end{cases}

n \in \mathbb{Z}
Fungrim symbol Notation Short description
LogBarnesGlogG(z)\log G(z) Logarithmic Barnes G-function
Loglog(z)\log(z) Natural logarithm
BarnesGG(z)G(z) Barnes G-function
Infinity\infty Positive infinity
ZZZ\mathbb{Z} Integers
Source code for this entry:
    Formula(Equal(LogBarnesG(n), Cases(Tuple(Log(BarnesG(n)), GreaterEqual(n, 1)), Tuple(Neg(Infinity), LessEqual(n, 0))))),
    Assumptions(Element(n, ZZ)))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC