Fungrim home page

Fungrim entry: e1f73d

BranchCuts ⁣(logG(z),z,C)={(n1,n):nZ0}\operatorname{BranchCuts}\!\left(\log G(z), z, \mathbb{C}\right) = \left\{ \left(-n - 1, -n\right) : n \in \mathbb{Z}_{\ge 0} \right\}
\operatorname{BranchCuts}\!\left(\log G(z), z, \mathbb{C}\right) = \left\{ \left(-n - 1, -n\right) : n \in \mathbb{Z}_{\ge 0} \right\}
Fungrim symbol Notation Short description
LogBarnesGlogG(z)\log G(z) Logarithmic Barnes G-function
CCC\mathbb{C} Complex numbers
OpenInterval(a,b)\left(a, b\right) Open interval
ZZGreaterEqualZn\mathbb{Z}_{\ge n} Integers greater than or equal to n
Source code for this entry:
    Formula(Equal(BranchCuts(LogBarnesG(z), z, CC), Set(OpenInterval(Sub(Neg(n), 1), Neg(n)), ForElement(n, ZZGreaterEqual(0))))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC