Fungrim home page

Fungrim entry: f77124

ordz=nG(z)=n+1\mathop{\operatorname{ord}}\limits_{z=-n} G(z) = n + 1
Assumptions:nZ0n \in \mathbb{Z}_{\ge 0}
\mathop{\operatorname{ord}}\limits_{z=-n} G(z) = n + 1

n \in \mathbb{Z}_{\ge 0}
Fungrim symbol Notation Short description
ComplexZeroMultiplicityordz=cf(z)\mathop{\operatorname{ord}}\limits_{z=c} f(z) Multiplicity (order) of complex zero
BarnesGG(z)G(z) Barnes G-function
ZZGreaterEqualZn\mathbb{Z}_{\ge n} Integers greater than or equal to n
Source code for this entry:
    Formula(Equal(ComplexZeroMultiplicity(BarnesG(z), For(z, Neg(n))), Add(n, 1))),
    Assumptions(And(Element(n, ZZGreaterEqual(0)))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC