BesselJ(nu, z), rendered as Yν(z), denotes the Bessel function of the second kind.
The input ν
is called the order. The input z
is called the argument.
Called with three arguments, BesselY(nu, z, r), rendered as Yν′(z), Yν′′(z), Yν′′′(z)
( 1≤r≤3
), or Yν(r)(z), represents the order r
derivative of the Bessel function with respect to the argument z.
The following table lists conditions such that BesselY(nu, z) or BesselY(nu, z, r) is defined in Fungrim.
|
Table data: (P,Q)
such that (P)⟹(Q)
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
BesselY | Yν(z) | Bessel function of the second kind |
BesselJ | Jν(z) | Bessel function of the first kind |
RR | R | Real numbers |
OpenInterval | (a,b) | Open interval |
Infinity | ∞ | Positive infinity |
CC | C | Complex numbers |
ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
Source code for this entry:
Entry(ID("5bb42e"), SymbolDefinition(BesselY, BesselY(nu, z), "Bessel function of the second kind"), Description(SourceForm(BesselJ(nu, z)), ", rendered as", BesselY(nu, z), ", denotes the Bessel function of the second kind. "), Description("The input", nu, "is called the order. The input", z, "is called the argument."), Description("Called with three arguments, ", SourceForm(BesselY(nu, z, r)), ", rendered as", BesselY(nu, z, 1), ", ", BesselY(nu, z, 2), ", ", BesselY(nu, z, 3), " (", LessEqual(1, r, 3), "), or", BesselY(nu, z, r), ", represents the order", r, "derivative of the Bessel function with respect to the argument", z, "."), Description("The following table lists conditions such that", SourceForm(BesselY(nu, z)), "or", SourceForm(BesselY(nu, z, r)), "is defined in Fungrim."), Table(TableRelation(Tuple(P, Q), Implies(P, Q)), TableHeadings(Description("Domain"), Description("Codomain")), List(TableSection("Numbers"), Tuple(And(Element(nu, RR), Element(z, OpenInterval(0, Infinity))), Element(BesselY(nu, z), RR)), Tuple(And(Element(nu, SetMinus(CC, Set(0))), Element(z, CC)), Element(BesselY(nu, z), CC)), Tuple(And(Element(nu, RR), Element(z, OpenInterval(0, Infinity)), Element(r, ZZGreaterEqual(0))), Element(BesselY(nu, z, r), RR)), Tuple(And(Element(nu, SetMinus(CC, Set(0))), Element(z, CC), Element(r, ZZGreaterEqual(0))), Element(BesselY(nu, z, r), CC)))))