From Ordner, a catalog of real numbers in Fungrim.
Decimal | Expression [entries] | Frequency |
---|---|---|
0.915965594177219015054603514932 | ConstCatalan [ce66a9 1f1fb4 d6703a fd82ab c2976e ba58e0 79f20e 08cda4 6d3591 ed4cca 4dec89 d864b2 dc507f 49df16 951f86 d2f9fb 807c7d d6415e e85723 8ee7c9 37fb5f 270e67 ec1435 937fa9 a766f2 38c2d5 208da7 d43f30 4c166d fc5ea9 f7b6aa c54c85 1d65c2 997777 0bd544 5b31ee 33aa62 4a5b9a 2744d4 d3cfc2 a8657e 6a83ad 9e9922 3e82c3 86d68c 5c9675 e09b77] Im(PolyLog(2, ConstI)) [1d65c2 208da7] Im(Mul(ConstCatalan, ConstI)) [208da7] DirichletL(2, DirichletCharacter(4, 3)) [9e9922] Integral(Div(Atan(x), x), For(x, 0, 1)) [ba58e0] Mul(Div(1, 4), LerchPhi(-1, 2, Div(1, 2))) [4c166d] Integral(Log(Cot(x)), For(x, 0, Div(Pi, 4))) [270e67] Integral(Asinh(Sin(x)), For(x, 0, Div(Pi, 2))) [4dec89] Integral(Asinh(Cos(x)), For(x, 0, Div(Pi, 2))) [d6415e] Integral(Atan(Exp(Neg(x))), For(x, 0, Infinity)) [fc5ea9] Neg(Integral(Log(Tan(x)), For(x, 0, Div(Pi, 4)))) [08cda4] Sub(Integral(EllipticE(Pow(m, 2)), For(m, 0, 1)), Div(1, 2)) [d3cfc2] Neg(Integral(Div(Log(x), Add(Pow(x, 2), 1)), For(x, 0, 1))) [d864b2] Mul(Div(1, 2), Integral(EllipticK(Pow(m, 2)), For(m, 0, 1))) [1f1fb4] Im(Add(Neg(Div(Pow(Pi, 2), 48)), Mul(ConstCatalan, ConstI))) [208da7] Mul(2, Integral(Log(Mul(2, Cos(x))), For(x, 0, Div(Pi, 4)))) [6d3591] Integral(Div(x, Mul(Sin(x), Cos(x))), For(x, 0, Div(Pi, 4))) [79f20e] Integral(Div(Log(x), Add(Pow(x, 2), 1)), For(x, 1, Infinity)) [49df16] Mul(Div(1, 2), Integral(Div(x, Cosh(x)), For(x, 0, Infinity))) [c54c85] Mul(Div(1, 8), Sub(DigammaFunction(Div(1, 4), 1), Pow(Pi, 2))) [2744d4] Integral(Div(Acos(x), Sqrt(Add(Pow(x, 2), 1))), For(x, 0, 1)) [fd82ab] Integral(Div(Asinh(x), Sqrt(Sub(1, Pow(x, 2)))), For(x, 0, 1)) [38c2d5] Neg(Mul(2, Integral(Log(Mul(2, Sin(x))), For(x, 0, Div(Pi, 4))))) [e09b77] Hypergeometric3F2(Div(1, 2), Div(1, 2), 1, Div(3, 2), Div(3, 2), -1) [a766f2] Sum(Div(Pow(-1, n), Pow(Add(Mul(2, n), 1), 2)), For(n, 0, Infinity)) [33aa62] Mul(Div(1, 16), Sub(HurwitzZeta(2, Div(1, 4)), HurwitzZeta(2, Div(3, 4)))) [e85723] Mul(Div(1, 4), Integral(Div(x, Sin(x)), For(x, Neg(Div(Pi, 2)), Div(Pi, 2)))) [ec1435] Integral(Integral(Div(1, Add(1, Mul(Pow(x, 2), Pow(y, 2)))), For(x, 0, 1)), For(y, 0, 1)) [5b31ee] Sub(1, Sum(Div(Mul(n, RiemannZeta(Add(Mul(2, n), 1))), Pow(16, n)), For(n, 1, Infinity))) [a8657e] Mul(Div(Pi, 2), Integral(Mul(Gamma(Add(1, x)), Gamma(Sub(1, x))), For(x, 0, Div(1, 2)))) [937fa9] Sub(Add(Div(Pow(Pi, 2), 16), Div(Mul(Pi, Log(2)), 4)), Integral(Pow(Atan(x), 2), For(x, 0, 1))) [997777] Add(Div(Mul(7, RiemannZeta(3)), Mul(4, Pi)), Mul(Div(2, Pi), Integral(Div(Pow(Atan(x), 2), x), For(x, 0, 1)))) [d6703a] Mul(Div(1, 2), Sum(Div(Pow(4, n), Mul(Pow(Add(Mul(2, n), 1), 2), Binomial(Mul(2, n), n))), For(n, 0, Infinity))) [d43f30] Mul(Div(1, 4), Integral(Integral(Div(1, Mul(Mul(Add(x, y), Sqrt(Sub(1, x))), Sqrt(Sub(1, y)))), For(x, 0, 1)), For(y, 0, 1))) [ed4cca] Add(Mul(Div(Pi, 8), Log(Add(2, Sqrt(3)))), Mul(Div(3, 8), Sum(Div(1, Mul(Pow(Add(Mul(2, n), 1), 2), Binomial(Mul(2, n), n))), For(n, 0, Infinity)))) [0bd544] Mul(Div(1, 64), Sum(Div(Mul(Pow(256, n), Add(Sub(Mul(580, Pow(n, 2)), Mul(184, n)), 15)), Mul(Mul(Mul(Mul(Pow(n, 3), Sub(Mul(2, n), 1)), Binomial(Mul(6, n), Mul(3, n))), Binomial(Mul(6, n), Mul(4, n))), Binomial(Mul(4, n), Mul(2, n)))), For(n, 1, Infinity))) [37fb5f] | 47 (#28) |
Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.
2021-03-15 19:12:00.328586 UTC