Fungrim home page

Fungrim entry: 5b31ee

G=010111+x2y2dxdyG = \int_{0}^{1} \int_{0}^{1} \frac{1}{1 + {x}^{2} {y}^{2}} \, dx \, dy
G = \int_{0}^{1} \int_{0}^{1} \frac{1}{1 + {x}^{2} {y}^{2}} \, dx \, dy
Fungrim symbol Notation Short description
ConstCatalanGG Catalan's constant
Integralabf(x)dx\int_{a}^{b} f(x) \, dx Integral
Powab{a}^{b} Power
Source code for this entry:
    Formula(Equal(ConstCatalan, Integral(Integral(Div(1, Add(1, Mul(Pow(x, 2), Pow(y, 2)))), For(x, 0, 1)), For(y, 0, 1)))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC