Fungrim home page

Fungrim entry: a8657e

G=1n=1nζ ⁣(2n+1)16nG = 1 - \sum_{n=1}^{\infty} \frac{n \zeta\!\left(2 n + 1\right)}{{16}^{n}}
G = 1 - \sum_{n=1}^{\infty} \frac{n \zeta\!\left(2 n + 1\right)}{{16}^{n}}
Fungrim symbol Notation Short description
ConstCatalanGG Catalan's constant
Sumnf(n)\sum_{n} f(n) Sum
RiemannZetaζ ⁣(s)\zeta\!\left(s\right) Riemann zeta function
Powab{a}^{b} Power
Infinity\infty Positive infinity
Source code for this entry:
    Formula(Equal(ConstCatalan, Sub(1, Sum(Div(Mul(n, RiemannZeta(Add(Mul(2, n), 1))), Pow(16, n)), For(n, 1, Infinity))))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC