Assumptions:ν∈Zandz∈Candr∈Z≥0
Alternative assumptions:ν∈Candz∈C∖{0}andr∈Z≥0
TeX:
{z}^{2} \left({r}^{2} + 7 r + 12\right) \frac{I^{(r + 4)}_{\nu}\!\left(z\right)}{\left(r + 4\right)!} + z \left(2 {r}^{2} + 11 r + 15\right) \frac{I^{(r + 3)}_{\nu}\!\left(z\right)}{\left(r + 3\right)!} + \left(r \left(r + 4\right) - {z}^{2} - {\nu}^{2} + 4\right) \frac{I^{(r + 2)}_{\nu}\!\left(z\right)}{\left(r + 2\right)!} - 2 z \frac{I^{(r + 1)}_{\nu}\!\left(z\right)}{\left(r + 1\right)!} - \frac{I^{(r)}_{\nu}\!\left(z\right)}{r !} = 0
\nu \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; r \in \mathbb{Z}_{\ge 0}
\nu \in \mathbb{C} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \setminus \left\{0\right\} \;\mathbin{\operatorname{and}}\; r \in \mathbb{Z}_{\ge 0}
Definitions:
Fungrim symbol | Notation | Short description |
---|
Pow | ab
| Power |
BesselI | Iν(z)
| Modified Bessel function of the first kind |
Factorial | n!
| Factorial |
ZZ | Z
| Integers |
CC | C
| Complex numbers |
ZZGreaterEqual | Z≥n
| Integers greater than or equal to n |
Source code for this entry:
Entry(ID("e233b0"),
Formula(Equal(Sub(Sub(Add(Add(Mul(Mul(Pow(z, 2), Add(Add(Pow(r, 2), Mul(7, r)), 12)), Div(BesselI(nu, z, Add(r, 4)), Factorial(Add(r, 4)))), Mul(Mul(z, Add(Add(Mul(2, Pow(r, 2)), Mul(11, r)), 15)), Div(BesselI(nu, z, Add(r, 3)), Factorial(Add(r, 3))))), Mul(Add(Sub(Sub(Mul(r, Add(r, 4)), Pow(z, 2)), Pow(nu, 2)), 4), Div(BesselI(nu, z, Add(r, 2)), Factorial(Add(r, 2))))), Mul(Mul(2, z), Div(BesselI(nu, z, Add(r, 1)), Factorial(Add(r, 1))))), Div(BesselI(nu, z, r), Factorial(r))), 0)),
Variables(nu, z, r),
Assumptions(And(Element(nu, ZZ), Element(z, CC), Element(r, ZZGreaterEqual(0))), And(Element(nu, CC), Element(z, SetMinus(CC, Set(0))), Element(r, ZZGreaterEqual(0)))))