Assumptions:k∈Z≥1ands∈(Z≥1)kand∑i=1ksi>k
TeX:
\zeta\!\left({s}_{1}, {s}_{2}, \ldots, {s}_{k}\right) = \sum_{\textstyle{n \in {\mathbb{Z}}^{k} \atop {n}_{1} > {n}_{2} > \ldots > {n}_{k} > 0}} \prod_{i=1}^{k} \frac{1}{{n}_{i}^{{s}_{i}}}
k \in \mathbb{Z}_{\ge 1} \;\mathbin{\operatorname{and}}\; s \in {\left(\mathbb{Z}_{\ge 1}\right)}^{k} \;\mathbin{\operatorname{and}}\; \sum_{i=1}^{k} {s}_{i} > k
Definitions:
Fungrim symbol | Notation | Short description |
---|
MultiZetaValue | ζ(s1,…,sk)
| Multiple zeta value (MZV) |
Sum | ∑nf(n)
| Sum |
Product | ∏nf(n)
| Product |
Pow | ab
| Power |
ZZ | Z
| Integers |
ZZGreaterEqual | Z≥n
| Integers greater than or equal to n |
Source code for this entry:
Entry(ID("94a39f"),
Formula(Equal(MultiZetaValue(Step(Subscript(s, i), For(i, 1, k))), Sum(Product(Div(1, Pow(Subscript(n, i), Subscript(s, i))), For(i, 1, k)), ForElement(n, Pow(ZZ, k)), Greater(Step(Subscript(n, i), For(i, 1, k)), 0)))),
Variables(k, s),
Assumptions(And(Element(k, ZZGreaterEqual(1)), Element(s, Pow(ZZGreaterEqual(1), k)), Greater(Sum(Subscript(s, i), For(i, 1, k)), k))))