Table of contents: Hypergeometric series - Differential equations - Kummer's transformation - Connection formulas - Asymptotic expansions
Fungrim symbol | Notation | Short description |
---|---|---|
Hypergeometric0F1 | 0F1(a,z) | Confluent hypergeometric limit function |
Entry(ID("316533"), SymbolDefinition(Hypergeometric0F1, Hypergeometric0F1(a, z), "Confluent hypergeometric limit function"))
Fungrim symbol | Notation | Short description |
---|---|---|
Hypergeometric0F1Regularized | 0F1(a,z) | Regularized confluent hypergeometric limit function |
Entry(ID("f565f5"), SymbolDefinition(Hypergeometric0F1Regularized, Hypergeometric0F1Regularized(a, z), "Regularized confluent hypergeometric limit function"))
Fungrim symbol | Notation | Short description |
---|---|---|
Hypergeometric1F1 | 1F1(a,b,z) | Kummer confluent hypergeometric function |
Entry(ID("512bea"), SymbolDefinition(Hypergeometric1F1, Hypergeometric1F1(a, b, z), "Kummer confluent hypergeometric function"))
Fungrim symbol | Notation | Short description |
---|---|---|
Hypergeometric1F1Regularized | 1F1(a,b,z) | Regularized Kummer confluent hypergeometric function |
Entry(ID("cee331"), SymbolDefinition(Hypergeometric1F1Regularized, Hypergeometric1F1Regularized(a, b, z), "Regularized Kummer confluent hypergeometric function"))
Fungrim symbol | Notation | Short description |
---|---|---|
HypergeometricU | U(a,b,z) | Tricomi confluent hypergeometric function |
Entry(ID("d6add6"), SymbolDefinition(HypergeometricU, HypergeometricU(a, b, z), "Tricomi confluent hypergeometric function"))
Fungrim symbol | Notation | Short description |
---|---|---|
HypergeometricUStar | U∗(a,b,z) | Scaled Tricomi confluent hypergeometric function |
Entry(ID("1b9cc5"), SymbolDefinition(HypergeometricUStar, HypergeometricUStar(a, b, z), "Scaled Tricomi confluent hypergeometric function"))
Fungrim symbol | Notation | Short description |
---|---|---|
Hypergeometric2F0 | 2F0(a,b,z) | Tricomi confluent hypergeometric function, alternative notation |
Entry(ID("b9cc75"), SymbolDefinition(Hypergeometric2F0, Hypergeometric2F0(a, b, z), "Tricomi confluent hypergeometric function, alternative notation"))
\,{}_0F_1\!\left(a, z\right) = \sum_{k=0}^{\infty} \frac{1}{\left(a\right)_{k}} \frac{{z}^{k}}{k !} a \in \mathbb{C} \setminus \{0, -1, \ldots\} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C}
Fungrim symbol | Notation | Short description |
---|---|---|
Hypergeometric0F1 | 0F1(a,z) | Confluent hypergeometric limit function |
Sum | ∑nf(n) | Sum |
RisingFactorial | (z)k | Rising factorial |
Pow | ab | Power |
Factorial | n! | Factorial |
Infinity | ∞ | Positive infinity |
CC | C | Complex numbers |
ZZLessEqual | Z≤n | Integers less than or equal to n |
Entry(ID("4c41ad"), Formula(Equal(Hypergeometric0F1(a, z), Sum(Mul(Div(1, RisingFactorial(a, k)), Div(Pow(z, k), Factorial(k))), For(k, 0, Infinity)))), Variables(a, z), Assumptions(And(Element(a, SetMinus(CC, ZZLessEqual(0))), Element(z, CC))))
\,{}_0{\textbf F}_1\!\left(a, z\right) = \sum_{k=0}^{\infty} \frac{1}{\Gamma\!\left(a + k\right)} \frac{{z}^{k}}{k !} a \in \mathbb{C} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C}
Fungrim symbol | Notation | Short description |
---|---|---|
Hypergeometric0F1Regularized | 0F1(a,z) | Regularized confluent hypergeometric limit function |
Sum | ∑nf(n) | Sum |
Gamma | Γ(z) | Gamma function |
Pow | ab | Power |
Factorial | n! | Factorial |
Infinity | ∞ | Positive infinity |
CC | C | Complex numbers |
Entry(ID("0a0aec"), Formula(Equal(Hypergeometric0F1Regularized(a, z), Sum(Mul(Div(1, Gamma(Add(a, k))), Div(Pow(z, k), Factorial(k))), For(k, 0, Infinity)))), Variables(a, z), Assumptions(And(Element(a, CC), Element(z, CC))))
\,{}_1F_1\!\left(a, b, z\right) = \sum_{k=0}^{\infty} \frac{\left(a\right)_{k}}{\left(b\right)_{k}} \frac{{z}^{k}}{k !} a \in \mathbb{C} \;\mathbin{\operatorname{and}}\; b \in \mathbb{C} \setminus \{0, -1, \ldots\} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C}
Fungrim symbol | Notation | Short description |
---|---|---|
Hypergeometric1F1 | 1F1(a,b,z) | Kummer confluent hypergeometric function |
Sum | ∑nf(n) | Sum |
RisingFactorial | (z)k | Rising factorial |
Pow | ab | Power |
Factorial | n! | Factorial |
Infinity | ∞ | Positive infinity |
CC | C | Complex numbers |
ZZLessEqual | Z≤n | Integers less than or equal to n |
Entry(ID("a61f01"), Formula(Equal(Hypergeometric1F1(a, b, z), Sum(Mul(Div(RisingFactorial(a, k), RisingFactorial(b, k)), Div(Pow(z, k), Factorial(k))), For(k, 0, Infinity)))), Variables(a, b, z), Assumptions(And(Element(a, CC), Element(b, SetMinus(CC, ZZLessEqual(0))), Element(z, CC))))
\,{}_1F_1\!\left(-n, b, z\right) = \sum_{k=0}^{n} \frac{\left(-n\right)_{k}}{\left(b\right)_{k}} \frac{{z}^{k}}{k !} n \in \mathbb{Z}_{\ge 0} \;\mathbin{\operatorname{and}}\; b \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \operatorname{not} \left(b \in \{0, -1, \ldots\} \;\mathbin{\operatorname{and}}\; b > -n\right) \;\mathbin{\operatorname{and}}\; z \in \mathbb{C}
Fungrim symbol | Notation | Short description |
---|---|---|
Hypergeometric1F1 | 1F1(a,b,z) | Kummer confluent hypergeometric function |
Sum | ∑nf(n) | Sum |
RisingFactorial | (z)k | Rising factorial |
Pow | ab | Power |
Factorial | n! | Factorial |
ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
CC | C | Complex numbers |
ZZLessEqual | Z≤n | Integers less than or equal to n |
Entry(ID("dec042"), Formula(Equal(Hypergeometric1F1(Neg(n), b, z), Sum(Mul(Div(RisingFactorial(Neg(n), k), RisingFactorial(b, k)), Div(Pow(z, k), Factorial(k))), For(k, 0, n)))), Variables(n, b, z), Assumptions(And(Element(n, ZZGreaterEqual(0)), Element(b, CC), Not(And(Element(b, ZZLessEqual(0)), Greater(b, Neg(n)))), Element(z, CC))))
\,{}_1{\textbf F}_1\!\left(a, b, z\right) = \sum_{k=0}^{\infty} \frac{\left(a\right)_{k}}{\Gamma\!\left(b + k\right)} \frac{{z}^{k}}{k !} a \in \mathbb{C} \;\mathbin{\operatorname{and}}\; b \in \mathbb{C} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C}
Fungrim symbol | Notation | Short description |
---|---|---|
Hypergeometric1F1Regularized | 1F1(a,b,z) | Regularized Kummer confluent hypergeometric function |
Sum | ∑nf(n) | Sum |
RisingFactorial | (z)k | Rising factorial |
Gamma | Γ(z) | Gamma function |
Pow | ab | Power |
Factorial | n! | Factorial |
Infinity | ∞ | Positive infinity |
CC | C | Complex numbers |
Entry(ID("70111e"), Formula(Equal(Hypergeometric1F1Regularized(a, b, z), Sum(Mul(Div(RisingFactorial(a, k), Gamma(Add(b, k))), Div(Pow(z, k), Factorial(k))), For(k, 0, Infinity)))), Variables(a, b, z), Assumptions(And(Element(a, CC), Element(b, CC), Element(z, CC))))
z y''(z) + \left(b - z\right) y'(z) - a y(z) = 0\; \text{ where } y(z) = C \,{}_1{\textbf F}_1\!\left(a, b, z\right) + D U\!\left(a, b, z\right) a \in \mathbb{C} \;\mathbin{\operatorname{and}}\; b \in \mathbb{C} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; C \in \mathbb{C} \;\mathbin{\operatorname{and}}\; D \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \left(D = 0 \;\mathbin{\operatorname{or}}\; z \ne 0 \;\mathbin{\operatorname{or}}\; -a \in \mathbb{Z}_{\ge 0}\right)
Fungrim symbol | Notation | Short description |
---|---|---|
ComplexDerivative | dzdf(z) | Complex derivative |
Hypergeometric1F1Regularized | 1F1(a,b,z) | Regularized Kummer confluent hypergeometric function |
HypergeometricU | U(a,b,z) | Tricomi confluent hypergeometric function |
CC | C | Complex numbers |
ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
Entry(ID("06f229"), Formula(Where(Equal(Sub(Add(Mul(z, ComplexDerivative(y(z), For(z, z, 2))), Mul(Sub(b, z), ComplexDerivative(y(z), For(z, z, 1)))), Mul(a, y(z))), 0), Equal(y(z), Add(Mul(C, Hypergeometric1F1Regularized(a, b, z)), Mul(D, HypergeometricU(a, b, z)))))), Variables(z, a, b, C, D), Assumptions(And(Element(a, CC), Element(b, CC), Element(z, CC), Element(C, CC), Element(D, CC), Or(Equal(D, 0), NotEqual(z, 0), Element(Neg(a), ZZGreaterEqual(0))))))
z y''(z) + a y'(z) - y(z) = 0\; \text{ where } y(z) = C \,{}_0{\textbf F}_1\!\left(a, z\right) + D {z}^{1 - a} \,{}_0{\textbf F}_1\!\left(2 - a, z\right) a \in \mathbb{C} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; C \in \mathbb{C} \;\mathbin{\operatorname{and}}\; D \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \left(z \ne 0 \;\mathbin{\operatorname{or}}\; 1 - a \in \mathbb{Z}_{\ge 0}\right)
Fungrim symbol | Notation | Short description |
---|---|---|
ComplexDerivative | dzdf(z) | Complex derivative |
Hypergeometric0F1Regularized | 0F1(a,z) | Regularized confluent hypergeometric limit function |
Pow | ab | Power |
CC | C | Complex numbers |
ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
Entry(ID("bb5d67"), Formula(Where(Equal(Sub(Add(Mul(z, ComplexDerivative(y(z), For(z, z, 2))), Mul(a, ComplexDerivative(y(z), For(z, z, 1)))), y(z)), 0), Equal(y(z), Add(Mul(C, Hypergeometric0F1Regularized(a, z)), Mul(Mul(D, Pow(z, Sub(1, a))), Hypergeometric0F1Regularized(Sub(2, a), z)))))), Variables(z, a, C, D), Assumptions(And(Element(a, CC), Element(z, CC), Element(C, CC), Element(D, CC), Or(NotEqual(z, 0), Element(Sub(1, a), ZZGreaterEqual(0))))))
\,{}_1F_1\!\left(a, b, z\right) = {e}^{z} \,{}_1F_1\!\left(b - a, b, -z\right) a \in \mathbb{C} \;\mathbin{\operatorname{and}}\; b \in \mathbb{C} \setminus \{0, -1, \ldots\} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C}
Fungrim symbol | Notation | Short description |
---|---|---|
Hypergeometric1F1 | 1F1(a,b,z) | Kummer confluent hypergeometric function |
Exp | ez | Exponential function |
CC | C | Complex numbers |
ZZLessEqual | Z≤n | Integers less than or equal to n |
Entry(ID("be533c"), Formula(Equal(Hypergeometric1F1(a, b, z), Mul(Exp(z), Hypergeometric1F1(Sub(b, a), b, Neg(z))))), Variables(a, b, z), Assumptions(And(Element(a, CC), Element(b, SetMinus(CC, ZZLessEqual(0))), Element(z, CC))))
\,{}_1{\textbf F}_1\!\left(a, b, z\right) = {e}^{z} \,{}_1{\textbf F}_1\!\left(b - a, b, -z\right) a \in \mathbb{C} \;\mathbin{\operatorname{and}}\; b \in \mathbb{C} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C}
Fungrim symbol | Notation | Short description |
---|---|---|
Hypergeometric1F1Regularized | 1F1(a,b,z) | Regularized Kummer confluent hypergeometric function |
Exp | ez | Exponential function |
CC | C | Complex numbers |
Entry(ID("a047eb"), Formula(Equal(Hypergeometric1F1Regularized(a, b, z), Mul(Exp(z), Hypergeometric1F1Regularized(Sub(b, a), b, Neg(z))))), Variables(a, b, z), Assumptions(And(Element(a, CC), Element(b, CC), Element(z, CC))))
U\!\left(a, b, z\right) = {z}^{1 - b} U\!\left(1 + a - b, 2 - b, z\right) a \in \mathbb{C} \;\mathbin{\operatorname{and}}\; b \in \mathbb{C} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; z \ne 0
Fungrim symbol | Notation | Short description |
---|---|---|
HypergeometricU | U(a,b,z) | Tricomi confluent hypergeometric function |
Pow | ab | Power |
CC | C | Complex numbers |
Entry(ID("9d3147"), Formula(Equal(HypergeometricU(a, b, z), Mul(Pow(z, Sub(1, b)), HypergeometricU(Sub(Add(1, a), b), Sub(2, b), z)))), Variables(a, b, z), Assumptions(And(Element(a, CC), Element(b, CC), Element(z, CC), NotEqual(z, 0))))
U^{*}\!\left(a, b, z\right) = {z}^{a} U\!\left(a, b, z\right) a \in \mathbb{C} \;\mathbin{\operatorname{and}}\; b \in \mathbb{C} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; z \ne 0
Fungrim symbol | Notation | Short description |
---|---|---|
HypergeometricUStar | U∗(a,b,z) | Scaled Tricomi confluent hypergeometric function |
Pow | ab | Power |
HypergeometricU | U(a,b,z) | Tricomi confluent hypergeometric function |
CC | C | Complex numbers |
Entry(ID("c8fcc7"), Formula(Equal(HypergeometricUStar(a, b, z), Mul(Pow(z, a), HypergeometricU(a, b, z)))), Variables(a, b, z), Assumptions(And(Element(a, CC), Element(b, CC), Element(z, CC), NotEqual(z, 0))))
U^{*}\!\left(a, b, z\right) = \,{}_2F_0\!\left(a, a - b + 1, -\frac{1}{z}\right) a \in \mathbb{C} \;\mathbin{\operatorname{and}}\; b \in \mathbb{C} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; z \ne 0
Fungrim symbol | Notation | Short description |
---|---|---|
HypergeometricUStar | U∗(a,b,z) | Scaled Tricomi confluent hypergeometric function |
Hypergeometric2F0 | 2F0(a,b,z) | Tricomi confluent hypergeometric function, alternative notation |
CC | C | Complex numbers |
Entry(ID("4cf1e9"), Formula(Equal(HypergeometricUStar(a, b, z), Hypergeometric2F0(a, Add(Sub(a, b), 1), Neg(Div(1, z))))), Variables(a, b, z), Assumptions(And(Element(a, CC), Element(b, CC), Element(z, CC), NotEqual(z, 0))))
\,{}_1{\textbf F}_1\!\left(a, b, z\right) = \frac{{\left(-z\right)}^{-a}}{\Gamma\!\left(b - a\right)} U^{*}\!\left(a, b, z\right) + \frac{{z}^{a - b} {e}^{z}}{\Gamma(a)} U^{*}\!\left(b - a, b, -z\right) a \in \mathbb{C} \;\mathbin{\operatorname{and}}\; b \in \mathbb{C} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; z \ne 0
Fungrim symbol | Notation | Short description |
---|---|---|
Hypergeometric1F1Regularized | 1F1(a,b,z) | Regularized Kummer confluent hypergeometric function |
Pow | ab | Power |
Gamma | Γ(z) | Gamma function |
HypergeometricUStar | U∗(a,b,z) | Scaled Tricomi confluent hypergeometric function |
Exp | ez | Exponential function |
CC | C | Complex numbers |
Entry(ID("f7f84e"), Formula(Equal(Hypergeometric1F1Regularized(a, b, z), Add(Mul(Div(Pow(Neg(z), Neg(a)), Gamma(Sub(b, a))), HypergeometricUStar(a, b, z)), Mul(Div(Mul(Pow(z, Sub(a, b)), Exp(z)), Gamma(a)), HypergeometricUStar(Sub(b, a), b, Neg(z)))))), Variables(a, b, z), Assumptions(And(Element(a, CC), Element(b, CC), Element(z, CC), NotEqual(z, 0))))
U\!\left(a, b, z\right) = \frac{\Gamma\!\left(1 - b\right)}{\Gamma\!\left(a - b + 1\right)} \,{}_1F_1\!\left(a, b, z\right) + \frac{\Gamma\!\left(b - 1\right)}{\Gamma(a)} {z}^{1 - b} \,{}_1F_1\!\left(a - b + 1, 2 - b, z\right) a \in \mathbb{C} \;\mathbin{\operatorname{and}}\; b \in \mathbb{C} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; z \ne 0 \;\mathbin{\operatorname{and}}\; b \notin \mathbb{Z}
Fungrim symbol | Notation | Short description |
---|---|---|
HypergeometricU | U(a,b,z) | Tricomi confluent hypergeometric function |
Gamma | Γ(z) | Gamma function |
Hypergeometric1F1 | 1F1(a,b,z) | Kummer confluent hypergeometric function |
Pow | ab | Power |
CC | C | Complex numbers |
ZZ | Z | Integers |
Entry(ID("6cf802"), Formula(Equal(HypergeometricU(a, b, z), Add(Mul(Div(Gamma(Sub(1, b)), Gamma(Add(Sub(a, b), 1))), Hypergeometric1F1(a, b, z)), Mul(Mul(Div(Gamma(Sub(b, 1)), Gamma(a)), Pow(z, Sub(1, b))), Hypergeometric1F1(Add(Sub(a, b), 1), Sub(2, b), z))))), Variables(a, b, z), Assumptions(And(Element(a, CC), Element(b, CC), Element(z, CC), NotEqual(z, 0), NotElement(b, ZZ))))
U\!\left(a, n, z\right) = \lim_{b \to n} \frac{\Gamma\!\left(1 - b\right)}{\Gamma\!\left(a - b + 1\right)} \,{}_1F_1\!\left(a, b, z\right) + \frac{\Gamma\!\left(b - 1\right)}{\Gamma(a)} {z}^{1 - b} \,{}_1F_1\!\left(a - b + 1, 2 - b, z\right) a \in \mathbb{C} \;\mathbin{\operatorname{and}}\; n \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; z \ne 0
Fungrim symbol | Notation | Short description |
---|---|---|
HypergeometricU | U(a,b,z) | Tricomi confluent hypergeometric function |
ComplexLimit | limz→af(z) | Limiting value, complex variable |
Gamma | Γ(z) | Gamma function |
Hypergeometric1F1 | 1F1(a,b,z) | Kummer confluent hypergeometric function |
Pow | ab | Power |
CC | C | Complex numbers |
ZZ | Z | Integers |
Entry(ID("18ef23"), Formula(Equal(HypergeometricU(a, n, z), ComplexLimit(Add(Mul(Div(Gamma(Sub(1, b)), Gamma(Add(Sub(a, b), 1))), Hypergeometric1F1(a, b, z)), Mul(Mul(Div(Gamma(Sub(b, 1)), Gamma(a)), Pow(z, Sub(1, b))), Hypergeometric1F1(Add(Sub(a, b), 1), Sub(2, b), z))), For(b, n)))), Variables(a, n, z), Assumptions(And(Element(a, CC), Element(n, ZZ), Element(z, CC), NotEqual(z, 0))))
\,{}_0F_1\!\left(a, z\right) = {e}^{-2 \sqrt{z}} \,{}_1F_1\!\left(a - \frac{1}{2}, 2 a - 1, 4 \sqrt{z}\right) a \in \mathbb{C} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; 2 a \notin \{1, 0, \ldots\}
Fungrim symbol | Notation | Short description |
---|---|---|
Hypergeometric0F1 | 0F1(a,z) | Confluent hypergeometric limit function |
Exp | ez | Exponential function |
Sqrt | z | Principal square root |
Hypergeometric1F1 | 1F1(a,b,z) | Kummer confluent hypergeometric function |
CC | C | Complex numbers |
ZZLessEqual | Z≤n | Integers less than or equal to n |
Entry(ID("2df3e3"), Formula(Equal(Hypergeometric0F1(a, z), Mul(Exp(Neg(Mul(2, Sqrt(z)))), Hypergeometric1F1(Sub(a, Div(1, 2)), Sub(Mul(2, a), 1), Mul(4, Sqrt(z)))))), Variables(a, z), Assumptions(And(Element(a, CC), Element(z, CC), NotElement(Mul(2, a), ZZLessEqual(1)))))
\,{}_0{\textbf F}_1\!\left(a, z\right) = {\left(-z\right)}^{\left( 1 - a \right) / 2} J_{a - 1}\!\left(2 \sqrt{-z}\right) a \in \mathbb{C} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; z \ne 0
Fungrim symbol | Notation | Short description |
---|---|---|
Hypergeometric0F1Regularized | 0F1(a,z) | Regularized confluent hypergeometric limit function |
Pow | ab | Power |
BesselJ | Jν(z) | Bessel function of the first kind |
Sqrt | z | Principal square root |
CC | C | Complex numbers |
Entry(ID("325a0e"), Formula(Equal(Hypergeometric0F1Regularized(a, z), Mul(Pow(Neg(z), Div(Sub(1, a), 2)), BesselJ(Sub(a, 1), Mul(2, Sqrt(Neg(z))))))), Variables(a, z), Assumptions(And(Element(a, CC), Element(z, CC), NotEqual(z, 0))))
\,{}_0{\textbf F}_1\!\left(a, z\right) = {z}^{\left( 1 - a \right) / 2} I_{a - 1}\!\left(2 \sqrt{z}\right) a \in \mathbb{C} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; z \ne 0
Fungrim symbol | Notation | Short description |
---|---|---|
Hypergeometric0F1Regularized | 0F1(a,z) | Regularized confluent hypergeometric limit function |
Pow | ab | Power |
BesselI | Iν(z) | Modified Bessel function of the first kind |
Sqrt | z | Principal square root |
CC | C | Complex numbers |
Entry(ID("00dfd1"), Formula(Equal(Hypergeometric0F1Regularized(a, z), Mul(Pow(z, Div(Sub(1, a), 2)), BesselI(Sub(a, 1), Mul(2, Sqrt(z)))))), Variables(a, z), Assumptions(And(Element(a, CC), Element(z, CC), NotEqual(z, 0))))
U^{*}\!\left(a, b, z\right) = \sum_{k=0}^{n - 1} \frac{\left(a\right)_{k} \left(a - b + 1\right)_{k}}{k ! {\left(-z\right)}^{k}} + R_{n}\!\left(a,b,z\right) a \in \mathbb{C} \;\mathbin{\operatorname{and}}\; b \in \mathbb{C} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; z \ne 0 \;\mathbin{\operatorname{and}}\; n \in \mathbb{Z}_{\ge 0}
Fungrim symbol | Notation | Short description |
---|---|---|
HypergeometricUStar | U∗(a,b,z) | Scaled Tricomi confluent hypergeometric function |
Sum | ∑nf(n) | Sum |
RisingFactorial | (z)k | Rising factorial |
Factorial | n! | Factorial |
Pow | ab | Power |
HypergeometricUStarRemainder | Rn(a,b,z) | Error term in asymptotic expansion of Tricomi confluent hypergeometric function |
CC | C | Complex numbers |
ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
Entry(ID("d1b3b5"), Formula(Equal(HypergeometricUStar(a, b, z), Add(Sum(Div(Mul(RisingFactorial(a, k), RisingFactorial(Add(Sub(a, b), 1), k)), Mul(Factorial(k), Pow(Neg(z), k))), For(k, 0, Sub(n, 1))), HypergeometricUStarRemainder(n, a, b, z)))), Variables(a, b, z, n), Assumptions(And(Element(a, CC), Element(b, CC), Element(z, CC), NotEqual(z, 0), Element(n, ZZGreaterEqual(0)))))
Fungrim symbol | Notation | Short description |
---|---|---|
HypergeometricUStarRemainder | Rn(a,b,z) | Error term in asymptotic expansion of Tricomi confluent hypergeometric function |
Entry(ID("99f69c"), SymbolDefinition(HypergeometricUStarRemainder, HypergeometricUStarRemainder(n, a, b, z), "Error term in asymptotic expansion of Tricomi confluent hypergeometric function"))
\lim_{z \to \infty} \left|R_{n}\!\left(a,b,{e}^{i \theta} z\right)\right| = 0 a \in \mathbb{C} \;\mathbin{\operatorname{and}}\; b \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \theta \in \mathbb{R} \;\mathbin{\operatorname{and}}\; n \in \mathbb{Z}_{\ge 1}
Fungrim symbol | Notation | Short description |
---|---|---|
ComplexLimit | limz→af(z) | Limiting value, complex variable |
Abs | ∣z∣ | Absolute value |
HypergeometricUStarRemainder | Rn(a,b,z) | Error term in asymptotic expansion of Tricomi confluent hypergeometric function |
Exp | ez | Exponential function |
ConstI | i | Imaginary unit |
Infinity | ∞ | Positive infinity |
CC | C | Complex numbers |
RR | R | Real numbers |
ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
Entry(ID("876844"), Formula(Equal(ComplexLimit(Abs(HypergeometricUStarRemainder(n, a, b, Mul(Exp(Mul(ConstI, theta)), z))), For(z, Infinity)), 0)), Variables(a, b, theta, n), Assumptions(And(Element(a, CC), Element(b, CC), Element(theta, RR), Element(n, ZZGreaterEqual(1)))))
\left|R_{n}\!\left(a,b,z\right)\right| \le \left|\frac{\left(a\right)_{n} \left(a - b + 1\right)_{n}}{n ! {z}^{n}}\right| \frac{2}{1 - \sigma} \exp\!\left(\frac{2 \rho}{\left(1 - \sigma\right) \left|z\right|}\right)\; \text{ where } \sigma = \frac{\left|b - 2 a\right|}{\left|z\right|},\;\rho = \left|{a}^{2} - a b + \frac{b}{2}\right| + \frac{\sigma \left(1 + \frac{\sigma}{4}\right)}{{\left(1 - \sigma\right)}^{2}} a \in \mathbb{C} \;\mathbin{\operatorname{and}}\; b \in \mathbb{C} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; z \ne 0 \;\mathbin{\operatorname{and}}\; n \in \mathbb{Z}_{\ge 0} \;\mathbin{\operatorname{and}}\; \operatorname{Re}(z) > \left|b - 2 a\right|
Fungrim symbol | Notation | Short description |
---|---|---|
Abs | ∣z∣ | Absolute value |
HypergeometricUStarRemainder | Rn(a,b,z) | Error term in asymptotic expansion of Tricomi confluent hypergeometric function |
RisingFactorial | (z)k | Rising factorial |
Factorial | n! | Factorial |
Pow | ab | Power |
Exp | ez | Exponential function |
CC | C | Complex numbers |
ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
Re | Re(z) | Real part |
Entry(ID("279e4f"), Formula(Where(LessEqual(Abs(HypergeometricUStarRemainder(n, a, b, z)), Mul(Mul(Abs(Div(Mul(RisingFactorial(a, n), RisingFactorial(Add(Sub(a, b), 1), n)), Mul(Factorial(n), Pow(z, n)))), Div(2, Sub(1, sigma))), Exp(Div(Mul(2, rho), Mul(Sub(1, sigma), Abs(z)))))), Equal(sigma, Div(Abs(Sub(b, Mul(2, a))), Abs(z))), Equal(rho, Add(Abs(Add(Sub(Pow(a, 2), Mul(a, b)), Div(b, 2))), Div(Mul(sigma, Add(1, Div(sigma, 4))), Pow(Sub(1, sigma), 2)))))), Variables(a, b, z, n), Assumptions(And(Element(a, CC), Element(b, CC), Element(z, CC), NotEqual(z, 0), Element(n, ZZGreaterEqual(0)), Greater(Re(z), Abs(Sub(b, Mul(2, a)))))), References("DLMF section 13.7, https://dlmf.nist.gov/13.7"))
\left|R_{n}\!\left(a,b,z\right)\right| \le \left|\frac{\left(a\right)_{n} \left(a - b + 1\right)_{n}}{n ! {z}^{n}}\right| \frac{2 \sqrt{1 + \frac{1}{2} \pi n}}{1 - \sigma} \exp\!\left(\frac{\pi \rho}{\left(1 - \sigma\right) \left|z\right|}\right)\; \text{ where } \sigma = \frac{\left|b - 2 a\right|}{\left|z\right|},\;\rho = \left|{a}^{2} - a b + \frac{b}{2}\right| + \frac{\sigma \left(1 + \frac{\sigma}{4}\right)}{{\left(1 - \sigma\right)}^{2}} a \in \mathbb{C} \;\mathbin{\operatorname{and}}\; b \in \mathbb{C} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; z \ne 0 \;\mathbin{\operatorname{and}}\; n \in \mathbb{Z}_{\ge 0} \;\mathbin{\operatorname{and}}\; \left(\left|\operatorname{Im}(z)\right| > \left|b - 2 a\right| \;\mathbin{\operatorname{or}}\; \operatorname{Re}(z) > \left|b - 2 a\right|\right)
Fungrim symbol | Notation | Short description |
---|---|---|
Abs | ∣z∣ | Absolute value |
HypergeometricUStarRemainder | Rn(a,b,z) | Error term in asymptotic expansion of Tricomi confluent hypergeometric function |
RisingFactorial | (z)k | Rising factorial |
Factorial | n! | Factorial |
Pow | ab | Power |
Sqrt | z | Principal square root |
Pi | π | The constant pi (3.14...) |
Exp | ez | Exponential function |
CC | C | Complex numbers |
ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
Im | Im(z) | Imaginary part |
Re | Re(z) | Real part |
Entry(ID("461a54"), Formula(Where(LessEqual(Abs(HypergeometricUStarRemainder(n, a, b, z)), Mul(Mul(Abs(Div(Mul(RisingFactorial(a, n), RisingFactorial(Add(Sub(a, b), 1), n)), Mul(Factorial(n), Pow(z, n)))), Div(Mul(2, Sqrt(Add(1, Mul(Mul(Div(1, 2), Pi), n)))), Sub(1, sigma))), Exp(Div(Mul(Pi, rho), Mul(Sub(1, sigma), Abs(z)))))), Equal(sigma, Div(Abs(Sub(b, Mul(2, a))), Abs(z))), Equal(rho, Add(Abs(Add(Sub(Pow(a, 2), Mul(a, b)), Div(b, 2))), Div(Mul(sigma, Add(1, Div(sigma, 4))), Pow(Sub(1, sigma), 2)))))), Variables(a, b, z, n), Assumptions(And(Element(a, CC), Element(b, CC), Element(z, CC), NotEqual(z, 0), Element(n, ZZGreaterEqual(0)), Or(Greater(Abs(Im(z)), Abs(Sub(b, Mul(2, a)))), Greater(Re(z), Abs(Sub(b, Mul(2, a))))))), References("DLMF section 13.7, https://dlmf.nist.gov/13.7"))
\left|R_{n}\!\left(a,b,z\right)\right| \le \left|\frac{\left(a\right)_{n} \left(a - b + 1\right)_{n}}{n ! {z}^{n}}\right| \frac{2 C(n)}{1 - \tau} \exp\!\left(\frac{2 C(1) \rho}{\left(1 - \tau\right) \left|z\right|}\right)\; \text{ where } \sigma = \frac{\left|b - 2 a\right|}{\left|z\right|},\;\nu = 1 + 2 {\sigma}^{2},\;\tau = \nu \sigma,\;\rho = \left|{a}^{2} - a b + \frac{b}{2}\right| + \frac{\tau \left(1 + \frac{\tau}{4}\right)}{{\left(1 - \tau\right)}^{2}},\;C(m) = \left(\sqrt{1 + \frac{\pi m}{2}} + \sigma {\nu}^{2} m\right) {\nu}^{m} a \in \mathbb{C} \;\mathbin{\operatorname{and}}\; b \in \mathbb{C} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; z \ne 0 \;\mathbin{\operatorname{and}}\; n \in \mathbb{Z}_{\ge 0} \;\mathbin{\operatorname{and}}\; \left|z\right| > 2 \left|b - 2 a\right|
Fungrim symbol | Notation | Short description |
---|---|---|
Abs | ∣z∣ | Absolute value |
HypergeometricUStarRemainder | Rn(a,b,z) | Error term in asymptotic expansion of Tricomi confluent hypergeometric function |
RisingFactorial | (z)k | Rising factorial |
Factorial | n! | Factorial |
Pow | ab | Power |
Exp | ez | Exponential function |
Sqrt | z | Principal square root |
Pi | π | The constant pi (3.14...) |
CC | C | Complex numbers |
ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
Entry(ID("7b91b4"), Formula(Where(LessEqual(Abs(HypergeometricUStarRemainder(n, a, b, z)), Mul(Abs(Div(Mul(RisingFactorial(a, n), RisingFactorial(Add(Sub(a, b), 1), n)), Mul(Factorial(n), Pow(z, n)))), Mul(Div(Mul(2, C(n)), Sub(1, tau)), Exp(Div(Mul(Mul(2, C(1)), rho), Mul(Sub(1, tau), Abs(z))))))), Equal(sigma, Div(Abs(Sub(b, Mul(2, a))), Abs(z))), Equal(nu, Add(1, Mul(2, Pow(sigma, 2)))), Equal(tau, Mul(nu, sigma)), Equal(rho, Add(Abs(Add(Sub(Pow(a, 2), Mul(a, b)), Div(b, 2))), Div(Mul(tau, Add(1, Div(tau, 4))), Pow(Sub(1, tau), 2)))), Equal(C(m), Mul(Add(Sqrt(Add(1, Div(Mul(Pi, m), 2))), Mul(Mul(sigma, Pow(nu, 2)), m)), Pow(nu, m))))), Variables(a, b, z, n), Assumptions(And(Element(a, CC), Element(b, CC), Element(z, CC), NotEqual(z, 0), Element(n, ZZGreaterEqual(0)), Greater(Abs(z), Mul(2, Abs(Sub(b, Mul(2, a))))))), References("DLMF section 13.7, https://dlmf.nist.gov/13.7"))
Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.
2021-03-15 19:12:00.328586 UTC