# Fungrim entry: a047eb

$\,{}_1{\textbf F}_1\!\left(a, b, z\right) = {e}^{z} \,{}_1{\textbf F}_1\!\left(b - a, b, -z\right)$
Assumptions:$a \in \mathbb{C} \;\mathbin{\operatorname{and}}\; b \in \mathbb{C} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C}$
TeX:
\,{}_1{\textbf F}_1\!\left(a, b, z\right) = {e}^{z} \,{}_1{\textbf F}_1\!\left(b - a, b, -z\right)

a \in \mathbb{C} \;\mathbin{\operatorname{and}}\; b \in \mathbb{C} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C}
Definitions:
Fungrim symbol Notation Short description
Hypergeometric1F1Regularized$\,{}_1{\textbf F}_1\!\left(a, b, z\right)$ Regularized Kummer confluent hypergeometric function
Exp${e}^{z}$ Exponential function
CC$\mathbb{C}$ Complex numbers
Source code for this entry:
Entry(ID("a047eb"),
Formula(Equal(Hypergeometric1F1Regularized(a, b, z), Mul(Exp(z), Hypergeometric1F1Regularized(Sub(b, a), b, Neg(z))))),
Variables(a, b, z),
Assumptions(And(Element(a, CC), Element(b, CC), Element(z, CC))))

## Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC