Fungrim home page

Fungrim entry: 0a0aec

0F1 ⁣(a,z)=k=01Γ ⁣(a+k)zkk!\,{}_0{\textbf F}_1\!\left(a, z\right) = \sum_{k=0}^{\infty} \frac{1}{\Gamma\!\left(a + k\right)} \frac{{z}^{k}}{k !}
Assumptions:aC  and  zCa \in \mathbb{C} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C}
\,{}_0{\textbf F}_1\!\left(a, z\right) = \sum_{k=0}^{\infty} \frac{1}{\Gamma\!\left(a + k\right)} \frac{{z}^{k}}{k !}

a \in \mathbb{C} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C}
Fungrim symbol Notation Short description
Hypergeometric0F1Regularized0F1 ⁣(a,z)\,{}_0{\textbf F}_1\!\left(a, z\right) Regularized confluent hypergeometric limit function
Sumnf(n)\sum_{n} f(n) Sum
GammaΓ(z)\Gamma(z) Gamma function
Powab{a}^{b} Power
Factorialn!n ! Factorial
Infinity\infty Positive infinity
CCC\mathbb{C} Complex numbers
Source code for this entry:
    Formula(Equal(Hypergeometric0F1Regularized(a, z), Sum(Mul(Div(1, Gamma(Add(a, k))), Div(Pow(z, k), Factorial(k))), For(k, 0, Infinity)))),
    Variables(a, z),
    Assumptions(And(Element(a, CC), Element(z, CC))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC