C={x+yi:x∈Randy∈R}
TeX:
\mathbb{C} = \left\{ x + y i : x \in \mathbb{R} \,\mathbin{\operatorname{and}}\, y \in \mathbb{R} \right\}
Definitions:
Fungrim symbol | Notation | Short description |
---|
CC | C
| Complex numbers |
SetBuilder | {f(x):P(x)}
| Set comprehension |
ConstI | i
| Imaginary unit |
RR | R
| Real numbers |
Source code for this entry:
Entry(ID("77ef0c"),
Formula(Equal(CC, SetBuilder(Add(x, Mul(y, ConstI)), Tuple(x, y), And(Element(x, RR), Element(y, RR))))))
Symbol: HH — H
— Upper complex half-plane
Represents the set of complex numbers with strictly positive imaginary part.
Definitions:
Fungrim symbol | Notation | Short description |
---|
HH | H
| Upper complex half-plane |
Source code for this entry:
Entry(ID("a65a14"),
SymbolDefinition(HH, HH, "Upper complex half-plane"),
Description("Represents the set of complex numbers with strictly positive imaginary part."))
H={τ:τ∈CandIm(τ)>0}
TeX:
\mathbb{H} = \left\{ \tau : \tau \in \mathbb{C} \,\mathbin{\operatorname{and}}\, \operatorname{Im}\!\left(\tau\right) \gt 0 \right\}
Definitions:
Fungrim symbol | Notation | Short description |
---|
HH | H
| Upper complex half-plane |
SetBuilder | {f(x):P(x)}
| Set comprehension |
CC | C
| Complex numbers |
Im | Im(z)
| Imaginary part |
Source code for this entry:
Entry(ID("d7962e"),
Formula(Equal(HH, SetBuilder(tau, tau, And(Element(tau, CC), Greater(Im(tau), 0))))))
T={z:z∈Cand∣z∣=1}
TeX:
\mathbb{T} = \left\{ z : z \in \mathbb{C} \,\mathbin{\operatorname{and}}\, \left|z\right| = 1 \right\}
Definitions:
Fungrim symbol | Notation | Short description |
---|
UnitCircle | T
| Unit circle |
SetBuilder | {f(x):P(x)}
| Set comprehension |
CC | C
| Complex numbers |
Abs | ∣z∣
| Absolute value |
Source code for this entry:
Entry(ID("fc0d55"),
Formula(Equal(UnitCircle, SetBuilder(z, z, And(Element(z, CC), Equal(Abs(z), 1))))))
T={eiθ:θ∈[0,2π)}
TeX:
\mathbb{T} = \left\{ {e}^{i \theta} : \theta \in \left[0, 2 \pi\right) \right\}
Definitions:
Fungrim symbol | Notation | Short description |
---|
UnitCircle | T
| Unit circle |
SetBuilder | {f(x):P(x)}
| Set comprehension |
Exp | ez
| Exponential function |
ConstI | i
| Imaginary unit |
ClosedOpenInterval | [a,b)
| Closed-open interval |
ConstPi | π
| The constant pi (3.14...) |
Source code for this entry:
Entry(ID("912ff9"),
Formula(Equal(UnitCircle, SetBuilder(Exp(Mul(ConstI, theta)), theta, Element(theta, ClosedOpenInterval(0, Mul(2, ConstPi)))))))
OpenDisk(z,r)={t:t∈Cand∣z−t∣<r}
Assumptions:z∈Candr∈Randr>0
TeX:
\operatorname{OpenDisk}\!\left(z, r\right) = \left\{ t : t \in \mathbb{C} \,\mathbin{\operatorname{and}}\, \left|z - t\right| \lt r \right\}
z \in \mathbb{C} \,\mathbin{\operatorname{and}}\, r \in \mathbb{R} \,\mathbin{\operatorname{and}}\, r \gt 0
Definitions:
Fungrim symbol | Notation | Short description |
---|
SetBuilder | {f(x):P(x)}
| Set comprehension |
CC | C
| Complex numbers |
Abs | ∣z∣
| Absolute value |
RR | R
| Real numbers |
Source code for this entry:
Entry(ID("c98bad"),
Formula(Equal(OpenDisk(z, r), SetBuilder(t, t, And(Element(t, CC), Less(Abs(Sub(z, t)), r))))),
Variables(z, r),
Assumptions(And(Element(z, CC), Element(r, RR), Greater(r, 0))))
ClosedDisk(z,r)={t:t∈Cand∣z−t∣≤r}
Assumptions:z∈Candr∈Randr≥0
TeX:
\operatorname{ClosedDisk}\!\left(z, r\right) = \left\{ t : t \in \mathbb{C} \,\mathbin{\operatorname{and}}\, \left|z - t\right| \le r \right\}
z \in \mathbb{C} \,\mathbin{\operatorname{and}}\, r \in \mathbb{R} \,\mathbin{\operatorname{and}}\, r \ge 0
Definitions:
Fungrim symbol | Notation | Short description |
---|
SetBuilder | {f(x):P(x)}
| Set comprehension |
CC | C
| Complex numbers |
Abs | ∣z∣
| Absolute value |
RR | R
| Real numbers |
Source code for this entry:
Entry(ID("d1cf0c"),
Formula(Equal(ClosedDisk(z, r), SetBuilder(t, t, And(Element(t, CC), LessEqual(Abs(Sub(z, t)), r))))),
Variables(z, r),
Assumptions(And(Element(z, CC), Element(r, RR), GreaterEqual(r, 0))))
Eρ={2ρeiθ+ρ−1e−iθ:θ∈[0,2π)}
Assumptions:ρ∈Randρ>1
TeX:
\mathcal{E}_{\rho} = \left\{ \frac{\rho {e}^{i \theta} + {\rho}^{-1} {e}^{-i \theta}}{2} : \theta \in \left[0, 2 \pi\right) \right\}
\rho \in \mathbb{R} \,\mathbin{\operatorname{and}}\, \rho \gt 1
Definitions:
Fungrim symbol | Notation | Short description |
---|
BernsteinEllipse | Eρ
| Bernstein ellipse with foci -1,+1 and semi-axis sum rho |
SetBuilder | {f(x):P(x)}
| Set comprehension |
Exp | ez
| Exponential function |
ConstI | i
| Imaginary unit |
Pow | ab
| Power |
ClosedOpenInterval | [a,b)
| Closed-open interval |
ConstPi | π
| The constant pi (3.14...) |
RR | R
| Real numbers |
Source code for this entry:
Entry(ID("40baa9"),
Formula(Equal(BernsteinEllipse(rho), SetBuilder(Div(Add(Mul(rho, Exp(Mul(ConstI, theta))), Mul(Pow(rho, -1), Exp(Neg(Mul(ConstI, theta))))), 2), theta, Element(theta, ClosedOpenInterval(0, Mul(2, ConstPi)))))),
Variables(rho),
Assumptions(And(Element(rho, RR), Greater(rho, 1))))