Fungrim home page

Fungrim entry: d1cf0c

ClosedDisk ⁣(z,r)={t:tCandztr}\operatorname{ClosedDisk}\!\left(z, r\right) = \left\{ t : t \in \mathbb{C} \,\mathbin{\operatorname{and}}\, \left|z - t\right| \le r \right\}
Assumptions:zCandrRandr0z \in \mathbb{C} \,\mathbin{\operatorname{and}}\, r \in \mathbb{R} \,\mathbin{\operatorname{and}}\, r \ge 0
TeX:
\operatorname{ClosedDisk}\!\left(z, r\right) = \left\{ t : t \in \mathbb{C} \,\mathbin{\operatorname{and}}\, \left|z - t\right| \le r \right\}

z \in \mathbb{C} \,\mathbin{\operatorname{and}}\, r \in \mathbb{R} \,\mathbin{\operatorname{and}}\, r \ge 0
Definitions:
Fungrim symbol Notation Short description
SetBuilder{f ⁣(x):P ⁣(x)}\left\{ f\!\left(x\right) : P\!\left(x\right) \right\} Set comprehension
CCC\mathbb{C} Complex numbers
Absz\left|z\right| Absolute value
RRR\mathbb{R} Real numbers
Source code for this entry:
Entry(ID("d1cf0c"),
    Formula(Equal(ClosedDisk(z, r), SetBuilder(t, t, And(Element(t, CC), LessEqual(Abs(Sub(z, t)), r))))),
    Variables(z, r),
    Assumptions(And(Element(z, CC), Element(r, RR), GreaterEqual(r, 0))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2019-06-18 07:49:59.356594 UTC