Assumptions:
TeX:
\mathcal{E}_{\rho} = \left\{ \frac{\rho {e}^{i \theta} + {\rho}^{-1} {e}^{-i \theta}}{2} : \theta \in \left[0, 2 \pi\right) \right\}
\rho \in \mathbb{R} \,\mathbin{\operatorname{and}}\, \rho \gt 1Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| BernsteinEllipse | Bernstein ellipse with foci -1,+1 and semi-axis sum rho | |
| SetBuilder | Set comprehension | |
| Exp | Exponential function | |
| ConstI | Imaginary unit | |
| Pow | Power | |
| ClosedOpenInterval | Closed-open interval | |
| ConstPi | The constant pi (3.14...) | |
| RR | Real numbers |
Source code for this entry:
Entry(ID("40baa9"),
Formula(Equal(BernsteinEllipse(rho), SetBuilder(Div(Add(Mul(rho, Exp(Mul(ConstI, theta))), Mul(Pow(rho, -1), Exp(Neg(Mul(ConstI, theta))))), 2), theta, Element(theta, ClosedOpenInterval(0, Mul(2, ConstPi)))))),
Variables(rho),
Assumptions(And(Element(rho, RR), Greater(rho, 1))))