C={x+yi:x∈Randy∈R}
TeX:
\mathbb{C} = \left\{ x + y i : x \in \mathbb{R} \;\mathbin{\operatorname{and}}\; y \in \mathbb{R} \right\}
Definitions:
Fungrim symbol | Notation | Short description |
---|
CC | C
| Complex numbers |
ConstI | i
| Imaginary unit |
RR | R
| Real numbers |
Source code for this entry:
Entry(ID("77ef0c"),
Formula(Equal(CC, Set(Add(x, Mul(y, ConstI)), For(Tuple(x, y)), And(Element(x, RR), Element(y, RR))))))
Symbol: HH — H
— Upper complex half-plane
Represents the set of complex numbers with strictly positive imaginary part.
Definitions:
Fungrim symbol | Notation | Short description |
---|
HH | H
| Upper complex half-plane |
Source code for this entry:
Entry(ID("a65a14"),
SymbolDefinition(HH, HH, "Upper complex half-plane"),
Description("Represents the set of complex numbers with strictly positive imaginary part."))
H={τ:τ∈CandIm(τ)>0}
TeX:
\mathbb{H} = \left\{ \tau : \tau \in \mathbb{C} \,\mathbin{\operatorname{and}}\, \operatorname{Im}(\tau) > 0 \right\}
Definitions:
Fungrim symbol | Notation | Short description |
---|
HH | H
| Upper complex half-plane |
CC | C
| Complex numbers |
Im | Im(z)
| Imaginary part |
Source code for this entry:
Entry(ID("d7962e"),
Formula(Equal(HH, Set(tau, ForElement(tau, CC), Greater(Im(tau), 0)))))
T={z:z∈Cand∣z∣=1}
TeX:
\mathbb{T} = \left\{ z : z \in \mathbb{C} \,\mathbin{\operatorname{and}}\, \left|z\right| = 1 \right\}
Definitions:
Fungrim symbol | Notation | Short description |
---|
UnitCircle | T
| Unit circle |
CC | C
| Complex numbers |
Abs | ∣z∣
| Absolute value |
Source code for this entry:
Entry(ID("fc0d55"),
Formula(Equal(UnitCircle, Set(z, ForElement(z, CC), Equal(Abs(z), 1)))))
T={eiθ:θ∈[0,2π)}
TeX:
\mathbb{T} = \left\{ {e}^{i \theta} : \theta \in \left[0, 2 \pi\right) \right\}
Definitions:
Fungrim symbol | Notation | Short description |
---|
UnitCircle | T
| Unit circle |
Exp | ez
| Exponential function |
ConstI | i
| Imaginary unit |
ClosedOpenInterval | [a,b)
| Closed-open interval |
Pi | π
| The constant pi (3.14...) |
Source code for this entry:
Entry(ID("912ff9"),
Formula(Equal(UnitCircle, Set(Exp(Mul(ConstI, theta)), ForElement(theta, ClosedOpenInterval(0, Mul(2, Pi)))))))
OpenDisk(z,r)={t:t∈Cand∣z−t∣<r}
Assumptions:z∈Candr∈Randr>0
TeX:
\operatorname{OpenDisk}\!\left(z, r\right) = \left\{ t : t \in \mathbb{C} \,\mathbin{\operatorname{and}}\, \left|z - t\right| < r \right\}
z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; r \in \mathbb{R} \;\mathbin{\operatorname{and}}\; r > 0
Definitions:
Fungrim symbol | Notation | Short description |
---|
CC | C
| Complex numbers |
Abs | ∣z∣
| Absolute value |
RR | R
| Real numbers |
Source code for this entry:
Entry(ID("c98bad"),
Formula(Equal(OpenDisk(z, r), Set(t, ForElement(t, CC), Less(Abs(Sub(z, t)), r)))),
Variables(z, r),
Assumptions(And(Element(z, CC), Element(r, RR), Greater(r, 0))))
ClosedDisk(z,r)={t:t∈Cand∣z−t∣≤r}
Assumptions:z∈Candr∈Randr≥0
TeX:
\operatorname{ClosedDisk}\!\left(z, r\right) = \left\{ t : t \in \mathbb{C} \,\mathbin{\operatorname{and}}\, \left|z - t\right| \le r \right\}
z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; r \in \mathbb{R} \;\mathbin{\operatorname{and}}\; r \ge 0
Definitions:
Fungrim symbol | Notation | Short description |
---|
CC | C
| Complex numbers |
Abs | ∣z∣
| Absolute value |
RR | R
| Real numbers |
Source code for this entry:
Entry(ID("d1cf0c"),
Formula(Equal(ClosedDisk(z, r), Set(t, ForElement(t, CC), LessEqual(Abs(Sub(z, t)), r)))),
Variables(z, r),
Assumptions(And(Element(z, CC), Element(r, RR), GreaterEqual(r, 0))))
Eρ={2ρeiθ+ρ−1e−iθ:θ∈[0,2π)}
Assumptions:ρ∈Randρ>1
TeX:
\mathcal{E}_{\rho} = \left\{ \frac{\rho {e}^{i \theta} + {\rho}^{-1} {e}^{-i \theta}}{2} : \theta \in \left[0, 2 \pi\right) \right\}
\rho \in \mathbb{R} \;\mathbin{\operatorname{and}}\; \rho > 1
Definitions:
Fungrim symbol | Notation | Short description |
---|
BernsteinEllipse | Eρ
| Bernstein ellipse with foci -1,+1 and semi-axis sum rho |
Exp | ez
| Exponential function |
ConstI | i
| Imaginary unit |
Pow | ab
| Power |
ClosedOpenInterval | [a,b)
| Closed-open interval |
Pi | π
| The constant pi (3.14...) |
RR | R
| Real numbers |
Source code for this entry:
Entry(ID("40baa9"),
Formula(Equal(BernsteinEllipse(rho), Set(Div(Add(Mul(rho, Exp(Mul(ConstI, theta))), Mul(Pow(rho, -1), Exp(Neg(Mul(ConstI, theta))))), 2), ForElement(theta, ClosedOpenInterval(0, Mul(2, Pi)))))),
Variables(rho),
Assumptions(And(Element(rho, RR), Greater(rho, 1))))