Fungrim home page

Fungrim entry: d1cf0c

ClosedDisk ⁣(z,r)={t:tCandztr}\operatorname{ClosedDisk}\!\left(z, r\right) = \left\{ t : t \in \mathbb{C} \,\mathbin{\operatorname{and}}\, \left|z - t\right| \le r \right\}
Assumptions:zC  and  rR  and  r0z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; r \in \mathbb{R} \;\mathbin{\operatorname{and}}\; r \ge 0
\operatorname{ClosedDisk}\!\left(z, r\right) = \left\{ t : t \in \mathbb{C} \,\mathbin{\operatorname{and}}\, \left|z - t\right| \le r \right\}

z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; r \in \mathbb{R} \;\mathbin{\operatorname{and}}\; r \ge 0
Fungrim symbol Notation Short description
CCC\mathbb{C} Complex numbers
Absz\left|z\right| Absolute value
RRR\mathbb{R} Real numbers
Source code for this entry:
    Formula(Equal(ClosedDisk(z, r), Set(t, ForElement(t, CC), LessEqual(Abs(Sub(z, t)), r)))),
    Variables(z, r),
    Assumptions(And(Element(z, CC), Element(r, RR), GreaterEqual(r, 0))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC