Table of contents: Definitions - Tables - Specific values - Zeros and extrema - Symmetries - Orthogonality - Differential equations - Recurrence relations - Order transformations - Trigonometric formulas - Power formulas - Product representations - Sum representations - Hypergeometric representations - Generating functions - Derivatives - Bounds and inequalities
Fungrim symbol | Notation | Short description |
---|---|---|
ChebyshevT | Tn(x) | Chebyshev polynomial of the first kind |
Entry(ID("1a0c43"), SymbolDefinition(ChebyshevT, ChebyshevT(n, x), "Chebyshev polynomial of the first kind"))
Fungrim symbol | Notation | Short description |
---|---|---|
ChebyshevU | Un(x) | Chebyshev polynomial of the second kind |
Entry(ID("d4e9aa"), SymbolDefinition(ChebyshevU, ChebyshevU(n, x), "Chebyshev polynomial of the second kind"))
|
x \in \mathbb{C}
Fungrim symbol | Notation | Short description |
---|---|---|
ChebyshevT | Tn(x) | Chebyshev polynomial of the first kind |
Pow | ab | Power |
CC | C | Complex numbers |
Entry(ID("85e42e"), Description("Table of", ChebyshevT(n, x), "for", LessEqual(0, n, 15)), Table(TableRelation(Tuple(n, p), Equal(ChebyshevT(n, x), p)), TableHeadings(n, ChebyshevT(n, x)), TableSplit(1), List(Tuple(0, 1), Tuple(1, x), Tuple(2, Sub(Mul(2, Pow(x, 2)), 1)), Tuple(3, Sub(Mul(4, Pow(x, 3)), Mul(3, x))), Tuple(4, Add(Sub(Mul(8, Pow(x, 4)), Mul(8, Pow(x, 2))), 1)), Tuple(5, Add(Sub(Mul(16, Pow(x, 5)), Mul(20, Pow(x, 3))), Mul(5, x))), Tuple(6, Sub(Add(Sub(Mul(32, Pow(x, 6)), Mul(48, Pow(x, 4))), Mul(18, Pow(x, 2))), 1)), Tuple(7, Sub(Add(Sub(Mul(64, Pow(x, 7)), Mul(112, Pow(x, 5))), Mul(56, Pow(x, 3))), Mul(7, x))), Tuple(8, Add(Sub(Add(Sub(Mul(128, Pow(x, 8)), Mul(256, Pow(x, 6))), Mul(160, Pow(x, 4))), Mul(32, Pow(x, 2))), 1)), Tuple(9, Add(Sub(Add(Sub(Mul(256, Pow(x, 9)), Mul(576, Pow(x, 7))), Mul(432, Pow(x, 5))), Mul(120, Pow(x, 3))), Mul(9, x))), Tuple(10, Sub(Add(Sub(Add(Sub(Mul(512, Pow(x, 10)), Mul(1280, Pow(x, 8))), Mul(1120, Pow(x, 6))), Mul(400, Pow(x, 4))), Mul(50, Pow(x, 2))), 1)), Tuple(11, Sub(Add(Sub(Add(Sub(Mul(1024, Pow(x, 11)), Mul(2816, Pow(x, 9))), Mul(2816, Pow(x, 7))), Mul(1232, Pow(x, 5))), Mul(220, Pow(x, 3))), Mul(11, x))), Tuple(12, Add(Sub(Add(Sub(Add(Sub(Mul(2048, Pow(x, 12)), Mul(6144, Pow(x, 10))), Mul(6912, Pow(x, 8))), Mul(3584, Pow(x, 6))), Mul(840, Pow(x, 4))), Mul(72, Pow(x, 2))), 1)), Tuple(13, Add(Sub(Add(Sub(Add(Sub(Mul(4096, Pow(x, 13)), Mul(13312, Pow(x, 11))), Mul(16640, Pow(x, 9))), Mul(9984, Pow(x, 7))), Mul(2912, Pow(x, 5))), Mul(364, Pow(x, 3))), Mul(13, x))), Tuple(14, Sub(Add(Sub(Add(Sub(Add(Sub(Mul(8192, Pow(x, 14)), Mul(28672, Pow(x, 12))), Mul(39424, Pow(x, 10))), Mul(26880, Pow(x, 8))), Mul(9408, Pow(x, 6))), Mul(1568, Pow(x, 4))), Mul(98, Pow(x, 2))), 1)), Tuple(15, Sub(Add(Sub(Add(Sub(Add(Sub(Mul(16384, Pow(x, 15)), Mul(61440, Pow(x, 13))), Mul(92160, Pow(x, 11))), Mul(70400, Pow(x, 9))), Mul(28800, Pow(x, 7))), Mul(6048, Pow(x, 5))), Mul(560, Pow(x, 3))), Mul(15, x))))), Variables(x), Assumptions(Element(x, CC)))
|
x \in \mathbb{C}
Fungrim symbol | Notation | Short description |
---|---|---|
ChebyshevU | Un(x) | Chebyshev polynomial of the second kind |
Pow | ab | Power |
CC | C | Complex numbers |
Entry(ID("fd8310"), Description("Table of", ChebyshevU(n, x), "for", LessEqual(0, n, 15)), Table(TableRelation(Tuple(n, p), Equal(ChebyshevU(n, x), p)), TableHeadings(n, ChebyshevU(n, x)), TableSplit(1), List(Tuple(0, 1), Tuple(1, Mul(2, x)), Tuple(2, Sub(Mul(4, Pow(x, 2)), 1)), Tuple(3, Sub(Mul(8, Pow(x, 3)), Mul(4, x))), Tuple(4, Add(Sub(Mul(16, Pow(x, 4)), Mul(12, Pow(x, 2))), 1)), Tuple(5, Add(Sub(Mul(32, Pow(x, 5)), Mul(32, Pow(x, 3))), Mul(6, x))), Tuple(6, Sub(Add(Sub(Mul(64, Pow(x, 6)), Mul(80, Pow(x, 4))), Mul(24, Pow(x, 2))), 1)), Tuple(7, Sub(Add(Sub(Mul(128, Pow(x, 7)), Mul(192, Pow(x, 5))), Mul(80, Pow(x, 3))), Mul(8, x))), Tuple(8, Add(Sub(Add(Sub(Mul(256, Pow(x, 8)), Mul(448, Pow(x, 6))), Mul(240, Pow(x, 4))), Mul(40, Pow(x, 2))), 1)), Tuple(9, Add(Sub(Add(Sub(Mul(512, Pow(x, 9)), Mul(1024, Pow(x, 7))), Mul(672, Pow(x, 5))), Mul(160, Pow(x, 3))), Mul(10, x))), Tuple(10, Sub(Add(Sub(Add(Sub(Mul(1024, Pow(x, 10)), Mul(2304, Pow(x, 8))), Mul(1792, Pow(x, 6))), Mul(560, Pow(x, 4))), Mul(60, Pow(x, 2))), 1)), Tuple(11, Sub(Add(Sub(Add(Sub(Mul(2048, Pow(x, 11)), Mul(5120, Pow(x, 9))), Mul(4608, Pow(x, 7))), Mul(1792, Pow(x, 5))), Mul(280, Pow(x, 3))), Mul(12, x))), Tuple(12, Add(Sub(Add(Sub(Add(Sub(Mul(4096, Pow(x, 12)), Mul(11264, Pow(x, 10))), Mul(11520, Pow(x, 8))), Mul(5376, Pow(x, 6))), Mul(1120, Pow(x, 4))), Mul(84, Pow(x, 2))), 1)), Tuple(13, Add(Sub(Add(Sub(Add(Sub(Mul(8192, Pow(x, 13)), Mul(24576, Pow(x, 11))), Mul(28160, Pow(x, 9))), Mul(15360, Pow(x, 7))), Mul(4032, Pow(x, 5))), Mul(448, Pow(x, 3))), Mul(14, x))), Tuple(14, Sub(Add(Sub(Add(Sub(Add(Sub(Mul(16384, Pow(x, 14)), Mul(53248, Pow(x, 12))), Mul(67584, Pow(x, 10))), Mul(42240, Pow(x, 8))), Mul(13440, Pow(x, 6))), Mul(2016, Pow(x, 4))), Mul(112, Pow(x, 2))), 1)), Tuple(15, Sub(Add(Sub(Add(Sub(Add(Sub(Mul(32768, Pow(x, 15)), Mul(114688, Pow(x, 13))), Mul(159744, Pow(x, 11))), Mul(112640, Pow(x, 9))), Mul(42240, Pow(x, 7))), Mul(8064, Pow(x, 5))), Mul(672, Pow(x, 3))), Mul(16, x))))), Variables(x), Assumptions(Element(x, CC)))
T_{0}\!\left(x\right) = 1 x \in \mathbb{C}
Fungrim symbol | Notation | Short description |
---|---|---|
ChebyshevT | Tn(x) | Chebyshev polynomial of the first kind |
CC | C | Complex numbers |
Entry(ID("c76e72"), Formula(Equal(ChebyshevT(0, x), 1)), Variables(x), Assumptions(Element(x, CC)))
T_{1}\!\left(x\right) = x x \in \mathbb{C}
Fungrim symbol | Notation | Short description |
---|---|---|
ChebyshevT | Tn(x) | Chebyshev polynomial of the first kind |
CC | C | Complex numbers |
Entry(ID("be5652"), Formula(Equal(ChebyshevT(1, x), x)), Variables(x), Assumptions(Element(x, CC)))
U_{0}\!\left(x\right) = 1 x \in \mathbb{C}
Fungrim symbol | Notation | Short description |
---|---|---|
ChebyshevU | Un(x) | Chebyshev polynomial of the second kind |
CC | C | Complex numbers |
Entry(ID("48765b"), Formula(Equal(ChebyshevU(0, x), 1)), Variables(x), Assumptions(Element(x, CC)))
U_{1}\!\left(x\right) = 2 x x \in \mathbb{C}
Fungrim symbol | Notation | Short description |
---|---|---|
ChebyshevU | Un(x) | Chebyshev polynomial of the second kind |
CC | C | Complex numbers |
Entry(ID("75eacb"), Formula(Equal(ChebyshevU(1, x), Mul(2, x))), Variables(x), Assumptions(Element(x, CC)))
U_{-1}\!\left(x\right) = 0 x \in \mathbb{C}
Fungrim symbol | Notation | Short description |
---|---|---|
ChebyshevU | Un(x) | Chebyshev polynomial of the second kind |
CC | C | Complex numbers |
Entry(ID("9001e6"), Formula(Equal(ChebyshevU(-1, x), 0)), Variables(x), Assumptions(Element(x, CC)))
T_{n}\!\left(1\right) = 1 n \in \mathbb{Z}
Fungrim symbol | Notation | Short description |
---|---|---|
ChebyshevT | Tn(x) | Chebyshev polynomial of the first kind |
ZZ | Z | Integers |
Entry(ID("fc5d42"), Formula(Equal(ChebyshevT(n, 1), 1)), Variables(n), Assumptions(Element(n, ZZ)))
T_{n}\!\left(-1\right) = {\left(-1\right)}^{n} n \in \mathbb{Z}
Fungrim symbol | Notation | Short description |
---|---|---|
ChebyshevT | Tn(x) | Chebyshev polynomial of the first kind |
Pow | ab | Power |
ZZ | Z | Integers |
Entry(ID("2760e7"), Formula(Equal(ChebyshevT(n, -1), Pow(-1, n))), Variables(n), Assumptions(Element(n, ZZ)))
T_{2 n}\!\left(0\right) = {\left(-1\right)}^{n} n \in \mathbb{Z}
Fungrim symbol | Notation | Short description |
---|---|---|
ChebyshevT | Tn(x) | Chebyshev polynomial of the first kind |
Pow | ab | Power |
ZZ | Z | Integers |
Entry(ID("a46d91"), Formula(Equal(ChebyshevT(Mul(2, n), 0), Pow(-1, n))), Variables(n), Assumptions(Element(n, ZZ)))
T_{2 n + 1}\!\left(0\right) = 0 n \in \mathbb{Z}
Fungrim symbol | Notation | Short description |
---|---|---|
ChebyshevT | Tn(x) | Chebyshev polynomial of the first kind |
ZZ | Z | Integers |
Entry(ID("42102c"), Formula(Equal(ChebyshevT(Add(Mul(2, n), 1), 0), 0)), Variables(n), Assumptions(Element(n, ZZ)))
U_{n}\!\left(1\right) = n + 1 n \in \mathbb{Z}
Fungrim symbol | Notation | Short description |
---|---|---|
ChebyshevU | Un(x) | Chebyshev polynomial of the second kind |
ZZ | Z | Integers |
Entry(ID("e03fa4"), Formula(Equal(ChebyshevU(n, 1), Add(n, 1))), Variables(n), Assumptions(Element(n, ZZ)))
U_{n}\!\left(-1\right) = {\left(-1\right)}^{n} \left(n + 1\right) n \in \mathbb{Z}
Fungrim symbol | Notation | Short description |
---|---|---|
ChebyshevU | Un(x) | Chebyshev polynomial of the second kind |
Pow | ab | Power |
ZZ | Z | Integers |
Entry(ID("be9a45"), Formula(Equal(ChebyshevU(n, -1), Mul(Pow(-1, n), Add(n, 1)))), Variables(n), Assumptions(Element(n, ZZ)))
U_{2 n}\!\left(0\right) = {\left(-1\right)}^{n} n \in \mathbb{Z}
Fungrim symbol | Notation | Short description |
---|---|---|
ChebyshevU | Un(x) | Chebyshev polynomial of the second kind |
Pow | ab | Power |
ZZ | Z | Integers |
Entry(ID("2a5337"), Formula(Equal(ChebyshevU(Mul(2, n), 0), Pow(-1, n))), Variables(n), Assumptions(Element(n, ZZ)))
U_{2 n + 1}\!\left(0\right) = 0 n \in \mathbb{Z}
Fungrim symbol | Notation | Short description |
---|---|---|
ChebyshevU | Un(x) | Chebyshev polynomial of the second kind |
ZZ | Z | Integers |
Entry(ID("7d111e"), Formula(Equal(ChebyshevU(Add(Mul(2, n), 1), 0), 0)), Variables(n), Assumptions(Element(n, ZZ)))
\mathop{\operatorname{zeros}\,}\limits_{x \in \mathbb{C}} T_{n}\!\left(x\right) = \left\{ \cos\!\left(\frac{2 k - 1}{2 n} \pi\right) : k \in \{1, 2, \ldots, n\} \right\} n \in \mathbb{Z}_{\ge 0}
Fungrim symbol | Notation | Short description |
---|---|---|
Zeros | x∈Szerosf(x) | Zeros (roots) of function |
ChebyshevT | Tn(x) | Chebyshev polynomial of the first kind |
CC | C | Complex numbers |
Cos | cos(z) | Cosine |
Pi | π | The constant pi (3.14...) |
Range | {a,a+1,…,b} | Integers between given endpoints |
ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
Entry(ID("7a7d1d"), Formula(Equal(Zeros(ChebyshevT(n, x), ForElement(x, CC)), Set(Cos(Mul(Div(Sub(Mul(2, k), 1), Mul(2, n)), Pi)), ForElement(k, Range(1, n))))), Variables(n), Assumptions(Element(n, ZZGreaterEqual(0))))
\mathop{\operatorname{zeros}\,}\limits_{x \in \mathbb{C}} U_{n}\!\left(x\right) = \left\{ \cos\!\left(\frac{k}{n + 1} \pi\right) : k \in \{1, 2, \ldots, n\} \right\} n \in \mathbb{Z}_{\ge 0}
Fungrim symbol | Notation | Short description |
---|---|---|
Zeros | x∈Szerosf(x) | Zeros (roots) of function |
ChebyshevU | Un(x) | Chebyshev polynomial of the second kind |
CC | C | Complex numbers |
Cos | cos(z) | Cosine |
Pi | π | The constant pi (3.14...) |
Range | {a,a+1,…,b} | Integers between given endpoints |
ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
Entry(ID("ce39ac"), Formula(Equal(Zeros(ChebyshevU(n, x), ForElement(x, CC)), Set(Cos(Mul(Div(k, Add(n, 1)), Pi)), ForElement(k, Range(1, n))))), Variables(n), Assumptions(Element(n, ZZGreaterEqual(0))))
\mathop{\operatorname{solutions}\,}\limits_{x \in \mathbb{C}} \left[T_{n}\!\left(x\right) \in \left\{-1, 1\right\}\right] = \left\{ \cos\!\left(\frac{k}{n} \pi\right) : k \in \{0, 1, \ldots, n\} \right\} n \in \mathbb{Z}_{\ge 1}
Fungrim symbol | Notation | Short description |
---|---|---|
Solutions | x∈SsolutionsQ(x) | Solution set |
ChebyshevT | Tn(x) | Chebyshev polynomial of the first kind |
CC | C | Complex numbers |
Cos | cos(z) | Cosine |
Pi | π | The constant pi (3.14...) |
Range | {a,a+1,…,b} | Integers between given endpoints |
ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
Entry(ID("3d25dd"), Formula(Equal(Solutions(Brackets(Element(ChebyshevT(n, x), Set(-1, 1))), ForElement(x, CC)), Set(Cos(Mul(Div(k, n), Pi)), ForElement(k, Range(0, n))))), Variables(n), Assumptions(Element(n, ZZGreaterEqual(1))))
\mathop{\operatorname{solutions}\,}\limits_{x \in \mathbb{C}} \left[T_{n}\!\left(x\right) = 1\right] = \left\{ \cos\!\left(\frac{2 k}{n} \pi\right) : k \in \{0, 1, \ldots, \left\lfloor \frac{n}{2} \right\rfloor\} \right\} n \in \mathbb{Z}_{\ge 1}
Fungrim symbol | Notation | Short description |
---|---|---|
Solutions | x∈SsolutionsQ(x) | Solution set |
ChebyshevT | Tn(x) | Chebyshev polynomial of the first kind |
CC | C | Complex numbers |
Cos | cos(z) | Cosine |
Pi | π | The constant pi (3.14...) |
Range | {a,a+1,…,b} | Integers between given endpoints |
ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
Entry(ID("b5a25e"), Formula(Equal(Solutions(Brackets(Equal(ChebyshevT(n, x), 1)), ForElement(x, CC)), Set(Cos(Mul(Div(Mul(2, k), n), Pi)), ForElement(k, Range(0, Floor(Div(n, 2))))))), Variables(n), Assumptions(Element(n, ZZGreaterEqual(1))))
\mathop{\operatorname{solutions}\,}\limits_{x \in \mathbb{C}} \left[T_{n}\!\left(x\right) = -1\right] = \left\{ \cos\!\left(\frac{2 k - 1}{n} \pi\right) : k \in \{1, 2, \ldots, \left\lfloor \frac{n + 1}{2} \right\rfloor\} \right\} n \in \mathbb{Z}_{\ge 1}
Fungrim symbol | Notation | Short description |
---|---|---|
Solutions | x∈SsolutionsQ(x) | Solution set |
ChebyshevT | Tn(x) | Chebyshev polynomial of the first kind |
CC | C | Complex numbers |
Cos | cos(z) | Cosine |
Pi | π | The constant pi (3.14...) |
Range | {a,a+1,…,b} | Integers between given endpoints |
ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
Entry(ID("db2b0a"), Formula(Equal(Solutions(Brackets(Equal(ChebyshevT(n, x), -1)), ForElement(x, CC)), Set(Cos(Mul(Div(Sub(Mul(2, k), 1), n), Pi)), ForElement(k, Range(1, Floor(Div(Add(n, 1), 2))))))), Variables(n), Assumptions(Element(n, ZZGreaterEqual(1))))
T_{n}\!\left(-x\right) = {\left(-1\right)}^{n} T_{n}\!\left(x\right) n \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; x \in \mathbb{C}
Fungrim symbol | Notation | Short description |
---|---|---|
ChebyshevT | Tn(x) | Chebyshev polynomial of the first kind |
Pow | ab | Power |
ZZ | Z | Integers |
CC | C | Complex numbers |
Entry(ID("6a24ab"), Formula(Equal(ChebyshevT(n, Neg(x)), Mul(Pow(-1, n), ChebyshevT(n, x)))), Variables(n, x), Assumptions(And(Element(n, ZZ), Element(x, CC))))
U_{n}\!\left(-x\right) = {\left(-1\right)}^{n} U_{n}\!\left(x\right) n \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; x \in \mathbb{C}
Fungrim symbol | Notation | Short description |
---|---|---|
ChebyshevU | Un(x) | Chebyshev polynomial of the second kind |
Pow | ab | Power |
ZZ | Z | Integers |
CC | C | Complex numbers |
Entry(ID("88aeb6"), Formula(Equal(ChebyshevU(n, Neg(x)), Mul(Pow(-1, n), ChebyshevU(n, x)))), Variables(n, x), Assumptions(And(Element(n, ZZ), Element(x, CC))))
T_{-n}\!\left(x\right) = T_{n}\!\left(x\right) n \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; x \in \mathbb{C}
Fungrim symbol | Notation | Short description |
---|---|---|
ChebyshevT | Tn(x) | Chebyshev polynomial of the first kind |
ZZ | Z | Integers |
CC | C | Complex numbers |
Entry(ID("9093a3"), Formula(Equal(ChebyshevT(Neg(n), x), ChebyshevT(n, x))), Variables(n, x), Assumptions(And(Element(n, ZZ), Element(x, CC))))
U_{-n}\!\left(x\right) = -U_{n - 2}\!\left(x\right) n \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; x \in \mathbb{C}
Fungrim symbol | Notation | Short description |
---|---|---|
ChebyshevU | Un(x) | Chebyshev polynomial of the second kind |
ZZ | Z | Integers |
CC | C | Complex numbers |
Entry(ID("78f5bb"), Formula(Equal(ChebyshevU(Neg(n), x), Neg(ChebyshevU(Sub(n, 2), x)))), Variables(n, x), Assumptions(And(Element(n, ZZ), Element(x, CC))))
\int_{-1}^{1} T_{n}\!\left(x\right) T_{m}\!\left(x\right) \frac{1}{\sqrt{1 - {x}^{2}}} \, dx = \begin{cases} 0, & n \ne m\\\pi, & n = m = 0\\\frac{\pi}{2}, & n = m \;\mathbin{\operatorname{and}}\; n \ne 0\\ \end{cases} n \in \mathbb{Z}_{\ge 0} \;\mathbin{\operatorname{and}}\; m \in \mathbb{Z}_{\ge 0}
Fungrim symbol | Notation | Short description |
---|---|---|
Integral | ∫abf(x)dx | Integral |
ChebyshevT | Tn(x) | Chebyshev polynomial of the first kind |
Sqrt | z | Principal square root |
Pow | ab | Power |
Pi | π | The constant pi (3.14...) |
ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
Entry(ID("2c26a1"), Formula(Equal(Integral(Mul(Mul(ChebyshevT(n, x), ChebyshevT(m, x)), Div(1, Sqrt(Sub(1, Pow(x, 2))))), For(x, -1, 1)), Cases(Tuple(0, NotEqual(n, m)), Tuple(Pi, Equal(n, m, 0)), Tuple(Div(Pi, 2), And(Equal(n, m), NotEqual(n, 0)))))), Variables(n, m), Assumptions(And(Element(n, ZZGreaterEqual(0)), Element(m, ZZGreaterEqual(0)))))
\int_{-1}^{1} U_{n}\!\left(x\right) U_{m}\!\left(x\right) \sqrt{1 - {x}^{2}} \, dx = \begin{cases} 0, & n \ne m\\\frac{\pi}{2}, & n = m\\ \end{cases} n \in \mathbb{Z}_{\ge 0} \;\mathbin{\operatorname{and}}\; m \in \mathbb{Z}_{\ge 0}
Fungrim symbol | Notation | Short description |
---|---|---|
Integral | ∫abf(x)dx | Integral |
ChebyshevU | Un(x) | Chebyshev polynomial of the second kind |
Sqrt | z | Principal square root |
Pow | ab | Power |
Pi | π | The constant pi (3.14...) |
ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
Entry(ID("473c36"), Formula(Equal(Integral(Mul(Mul(ChebyshevU(n, x), ChebyshevU(m, x)), Sqrt(Sub(1, Pow(x, 2)))), For(x, -1, 1)), Cases(Tuple(0, NotEqual(n, m)), Tuple(Div(Pi, 2), Equal(n, m))))), Variables(n, m), Assumptions(And(Element(n, ZZGreaterEqual(0)), Element(m, ZZGreaterEqual(0)))))
\int_{-1}^{1} T_{n}\!\left(x\right) {x}^{m} \frac{1}{\sqrt{1 - {x}^{2}}} \, dx = 0 n \in \mathbb{Z}_{\ge 0} \;\mathbin{\operatorname{and}}\; m \in \{0, 1, \ldots, n - 1\}
Fungrim symbol | Notation | Short description |
---|---|---|
Integral | ∫abf(x)dx | Integral |
ChebyshevT | Tn(x) | Chebyshev polynomial of the first kind |
Pow | ab | Power |
Sqrt | z | Principal square root |
ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
Range | {a,a+1,…,b} | Integers between given endpoints |
Entry(ID("3d77ab"), Formula(Equal(Integral(Mul(Mul(ChebyshevT(n, x), Pow(x, m)), Div(1, Sqrt(Sub(1, Pow(x, 2))))), For(x, -1, 1)), 0)), Variables(n, m), Assumptions(And(Element(n, ZZGreaterEqual(0)), Element(m, Range(0, Sub(n, 1))))))
\left(1 - {x}^{2}\right) y''(x) - x y'(x) + {n}^{2} y(x) = 0\; \text{ where } y(x) = {c}_{1} T_{n}\!\left(x\right) + {c}_{2} U_{n - 1}\!\left(x\right) \sqrt{1 - {x}^{2}} n \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; x \in \mathbb{C} \;\mathbin{\operatorname{and}}\; {c}_{1} \in \mathbb{C} \;\mathbin{\operatorname{and}}\; {c}_{2} \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \left({c}_{2} = 0 \;\mathbin{\operatorname{or}}\; x \notin \left(-\infty, 1\right] \cup \left[1, \infty\right)\right)
Fungrim symbol | Notation | Short description |
---|---|---|
Pow | ab | Power |
ComplexDerivative | dzdf(z) | Complex derivative |
ChebyshevT | Tn(x) | Chebyshev polynomial of the first kind |
ChebyshevU | Un(x) | Chebyshev polynomial of the second kind |
Sqrt | z | Principal square root |
ZZ | Z | Integers |
CC | C | Complex numbers |
OpenClosedInterval | (a,b] | Open-closed interval |
Infinity | ∞ | Positive infinity |
ClosedOpenInterval | [a,b) | Closed-open interval |
Entry(ID("0ed026"), Formula(Where(Equal(Add(Sub(Mul(Sub(1, Pow(x, 2)), ComplexDerivative(y(x), For(x, x, 2))), Mul(x, ComplexDerivative(y(x), For(x, x, 1)))), Mul(Pow(n, 2), y(x))), 0), Equal(y(x), Add(Mul(Subscript(c, 1), ChebyshevT(n, x)), Mul(Mul(Subscript(c, 2), ChebyshevU(Sub(n, 1), x)), Sqrt(Sub(1, Pow(x, 2)))))))), Variables(n, x, Subscript(c, 1), Subscript(c, 2)), Assumptions(And(Element(n, ZZ), Element(x, CC), Element(Subscript(c, 1), CC), Element(Subscript(c, 2), CC), Or(Equal(Subscript(c, 2), 0), NotElement(x, Union(OpenClosedInterval(Neg(Infinity), 1), ClosedOpenInterval(1, Infinity)))))))
\left(1 - {x}^{2}\right) y''(x) - 3 x y'(x) + n \left(n + 2\right) y(x) = 0\; \text{ where } y(x) = {c}_{1} U_{n}\!\left(x\right) + {c}_{2} \frac{T_{n + 1}\!\left(x\right)}{\sqrt{1 - {x}^{2}}} n \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; x \in \mathbb{C} \;\mathbin{\operatorname{and}}\; {c}_{1} \in \mathbb{C} \;\mathbin{\operatorname{and}}\; {c}_{2} \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \left({c}_{2} = 0 \;\mathbin{\operatorname{or}}\; x \notin \left(-\infty, 1\right] \cup \left[1, \infty\right)\right) \;\mathbin{\operatorname{and}}\; x \notin \left\{-1, 1\right\}
Fungrim symbol | Notation | Short description |
---|---|---|
Pow | ab | Power |
ComplexDerivative | dzdf(z) | Complex derivative |
ChebyshevU | Un(x) | Chebyshev polynomial of the second kind |
ChebyshevT | Tn(x) | Chebyshev polynomial of the first kind |
Sqrt | z | Principal square root |
ZZ | Z | Integers |
CC | C | Complex numbers |
OpenClosedInterval | (a,b] | Open-closed interval |
Infinity | ∞ | Positive infinity |
ClosedOpenInterval | [a,b) | Closed-open interval |
Entry(ID("30b67b"), Formula(Where(Equal(Add(Sub(Mul(Sub(1, Pow(x, 2)), ComplexDerivative(y(x), For(x, x, 2))), Mul(Mul(3, x), ComplexDerivative(y(x), For(x, x, 1)))), Mul(Mul(n, Add(n, 2)), y(x))), 0), Equal(y(x), Add(Mul(Subscript(c, 1), ChebyshevU(n, x)), Mul(Subscript(c, 2), Div(ChebyshevT(Add(n, 1), x), Sqrt(Sub(1, Pow(x, 2))))))))), Variables(n, x, Subscript(c, 1), Subscript(c, 2)), Assumptions(And(Element(n, ZZ), Element(x, CC), Element(Subscript(c, 1), CC), Element(Subscript(c, 2), CC), Or(Equal(Subscript(c, 2), 0), NotElement(x, Union(OpenClosedInterval(Neg(Infinity), 1), ClosedOpenInterval(1, Infinity)))), NotElement(x, Set(-1, 1)))))
T_{n}\!\left(x\right) = 2 x T_{n - 1}\!\left(x\right) - T_{n - 2}\!\left(x\right) n \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; x \in \mathbb{C}
Fungrim symbol | Notation | Short description |
---|---|---|
ChebyshevT | Tn(x) | Chebyshev polynomial of the first kind |
ZZ | Z | Integers |
CC | C | Complex numbers |
Entry(ID("faeed9"), Formula(Equal(ChebyshevT(n, x), Sub(Mul(Mul(2, x), ChebyshevT(Sub(n, 1), x)), ChebyshevT(Sub(n, 2), x)))), Variables(n, x), Assumptions(And(Element(n, ZZ), Element(x, CC))))
U_{n}\!\left(x\right) = 2 x U_{n - 1}\!\left(x\right) - U_{n - 2}\!\left(x\right) n \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; x \in \mathbb{C}
Fungrim symbol | Notation | Short description |
---|---|---|
ChebyshevU | Un(x) | Chebyshev polynomial of the second kind |
ZZ | Z | Integers |
CC | C | Complex numbers |
Entry(ID("d1ef91"), Formula(Equal(ChebyshevU(n, x), Sub(Mul(Mul(2, x), ChebyshevU(Sub(n, 1), x)), ChebyshevU(Sub(n, 2), x)))), Variables(n, x), Assumptions(And(Element(n, ZZ), Element(x, CC))))
T_{n}\!\left(x\right) = 2 x T_{n + 1}\!\left(x\right) - T_{n + 2}\!\left(x\right) n \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; x \in \mathbb{C}
Fungrim symbol | Notation | Short description |
---|---|---|
ChebyshevT | Tn(x) | Chebyshev polynomial of the first kind |
ZZ | Z | Integers |
CC | C | Complex numbers |
Entry(ID("8a785a"), Formula(Equal(ChebyshevT(n, x), Sub(Mul(Mul(2, x), ChebyshevT(Add(n, 1), x)), ChebyshevT(Add(n, 2), x)))), Variables(n, x), Assumptions(And(Element(n, ZZ), Element(x, CC))))
U_{n}\!\left(x\right) = 2 x U_{n + 1}\!\left(x\right) - U_{n + 2}\!\left(x\right) n \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; x \in \mathbb{C}
Fungrim symbol | Notation | Short description |
---|---|---|
ChebyshevU | Un(x) | Chebyshev polynomial of the second kind |
ZZ | Z | Integers |
CC | C | Complex numbers |
Entry(ID("303204"), Formula(Equal(ChebyshevU(n, x), Sub(Mul(Mul(2, x), ChebyshevU(Add(n, 1), x)), ChebyshevU(Add(n, 2), x)))), Variables(n, x), Assumptions(And(Element(n, ZZ), Element(x, CC))))
T_{n}\!\left(x\right) = x T_{n - 1}\!\left(x\right) - \left(1 - {x}^{2}\right) U_{n - 2}\!\left(x\right) n \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; x \in \mathbb{C}
Fungrim symbol | Notation | Short description |
---|---|---|
ChebyshevT | Tn(x) | Chebyshev polynomial of the first kind |
Pow | ab | Power |
ChebyshevU | Un(x) | Chebyshev polynomial of the second kind |
ZZ | Z | Integers |
CC | C | Complex numbers |
Entry(ID("7b2c26"), Formula(Equal(ChebyshevT(n, x), Sub(Mul(x, ChebyshevT(Sub(n, 1), x)), Mul(Sub(1, Pow(x, 2)), ChebyshevU(Sub(n, 2), x))))), Variables(n, x), Assumptions(And(Element(n, ZZ), Element(x, CC))))
U_{n}\!\left(x\right) = x U_{n - 1}\!\left(x\right) + T_{n}\!\left(x\right) n \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; x \in \mathbb{C}
Fungrim symbol | Notation | Short description |
---|---|---|
ChebyshevU | Un(x) | Chebyshev polynomial of the second kind |
ChebyshevT | Tn(x) | Chebyshev polynomial of the first kind |
ZZ | Z | Integers |
CC | C | Complex numbers |
Entry(ID("ce5e03"), Formula(Equal(ChebyshevU(n, x), Add(Mul(x, ChebyshevU(Sub(n, 1), x)), ChebyshevT(n, x)))), Variables(n, x), Assumptions(And(Element(n, ZZ), Element(x, CC))))
T_{n}\!\left(x\right) = \frac{U_{n}\!\left(x\right) - U_{n - 2}\!\left(x\right)}{2} n \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; x \in \mathbb{C}
Fungrim symbol | Notation | Short description |
---|---|---|
ChebyshevT | Tn(x) | Chebyshev polynomial of the first kind |
ChebyshevU | Un(x) | Chebyshev polynomial of the second kind |
ZZ | Z | Integers |
CC | C | Complex numbers |
Entry(ID("0649c9"), Formula(Equal(ChebyshevT(n, x), Div(Sub(ChebyshevU(n, x), ChebyshevU(Sub(n, 2), x)), 2))), Variables(n, x), Assumptions(And(Element(n, ZZ), Element(x, CC))))
T_{n}\!\left(x\right) = U_{n}\!\left(x\right) - x U_{n - 1}\!\left(x\right) n \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; x \in \mathbb{C}
Fungrim symbol | Notation | Short description |
---|---|---|
ChebyshevT | Tn(x) | Chebyshev polynomial of the first kind |
ChebyshevU | Un(x) | Chebyshev polynomial of the second kind |
ZZ | Z | Integers |
CC | C | Complex numbers |
Entry(ID("844561"), Formula(Equal(ChebyshevT(n, x), Sub(ChebyshevU(n, x), Mul(x, ChebyshevU(Sub(n, 1), x))))), Variables(n, x), Assumptions(And(Element(n, ZZ), Element(x, CC))))
T_{m}\!\left(T_{n}\!\left(x\right)\right) = T_{m n}\!\left(x\right) m \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; n \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; x \in \mathbb{C}
Fungrim symbol | Notation | Short description |
---|---|---|
ChebyshevT | Tn(x) | Chebyshev polynomial of the first kind |
ZZ | Z | Integers |
CC | C | Complex numbers |
Entry(ID("7e882c"), Formula(Equal(ChebyshevT(m, ChebyshevT(n, x)), ChebyshevT(Mul(m, n), x))), Variables(m, n, x), Assumptions(And(Element(m, ZZ), Element(n, ZZ), Element(x, CC))))
T_{m}\!\left(x\right) T_{n}\!\left(x\right) = \frac{T_{m + n}\!\left(x\right) + T_{\left|m - n\right|}\!\left(x\right)}{2} m \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; n \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; x \in \mathbb{C}
Fungrim symbol | Notation | Short description |
---|---|---|
ChebyshevT | Tn(x) | Chebyshev polynomial of the first kind |
Abs | ∣z∣ | Absolute value |
ZZ | Z | Integers |
CC | C | Complex numbers |
Entry(ID("ed5222"), Formula(Equal(Mul(ChebyshevT(m, x), ChebyshevT(n, x)), Div(Add(ChebyshevT(Add(m, n), x), ChebyshevT(Abs(Sub(m, n)), x)), 2))), Variables(m, n, x), Assumptions(And(Element(m, ZZ), Element(n, ZZ), Element(x, CC))))
T_{2 n}\!\left(x\right) = 2 T_{n}^{2}\!\left(x\right) - 1 n \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; x \in \mathbb{C}
Fungrim symbol | Notation | Short description |
---|---|---|
ChebyshevT | Tn(x) | Chebyshev polynomial of the first kind |
Pow | ab | Power |
ZZ | Z | Integers |
CC | C | Complex numbers |
Entry(ID("4b83c6"), Formula(Equal(ChebyshevT(Mul(2, n), x), Sub(Mul(2, Pow(ChebyshevT(n, x), 2)), 1))), Variables(n, x), Assumptions(And(Element(n, ZZ), Element(x, CC))))
T_{2 n + 1}\!\left(x\right) = 2 T_{n + 1}\!\left(x\right) T_{n}\!\left(x\right) - x n \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; x \in \mathbb{C}
Fungrim symbol | Notation | Short description |
---|---|---|
ChebyshevT | Tn(x) | Chebyshev polynomial of the first kind |
ZZ | Z | Integers |
CC | C | Complex numbers |
Entry(ID("de0968"), Formula(Equal(ChebyshevT(Add(Mul(2, n), 1), x), Sub(Mul(Mul(2, ChebyshevT(Add(n, 1), x)), ChebyshevT(n, x)), x))), Variables(n, x), Assumptions(And(Element(n, ZZ), Element(x, CC))))
T_{2 n}\!\left(x\right) = T_{n}\!\left(2 {x}^{2} - 1\right) n \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; x \in \mathbb{C}
Fungrim symbol | Notation | Short description |
---|---|---|
ChebyshevT | Tn(x) | Chebyshev polynomial of the first kind |
Pow | ab | Power |
ZZ | Z | Integers |
CC | C | Complex numbers |
Entry(ID("82288c"), Formula(Equal(ChebyshevT(Mul(2, n), x), ChebyshevT(n, Sub(Mul(2, Pow(x, 2)), 1)))), Variables(n, x), Assumptions(And(Element(n, ZZ), Element(x, CC))))
U_{2 n}\!\left(x\right) = T_{n}\!\left(2 {x}^{2} - 1\right) + U_{n - 1}\!\left(2 {x}^{2} - 1\right) n \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; x \in \mathbb{C}
Fungrim symbol | Notation | Short description |
---|---|---|
ChebyshevU | Un(x) | Chebyshev polynomial of the second kind |
ChebyshevT | Tn(x) | Chebyshev polynomial of the first kind |
Pow | ab | Power |
ZZ | Z | Integers |
CC | C | Complex numbers |
Entry(ID("5f09f4"), Formula(Equal(ChebyshevU(Mul(2, n), x), Add(ChebyshevT(n, Sub(Mul(2, Pow(x, 2)), 1)), ChebyshevU(Sub(n, 1), Sub(Mul(2, Pow(x, 2)), 1))))), Variables(n, x), Assumptions(And(Element(n, ZZ), Element(x, CC))))
T_{n}\!\left(x\right) = \cos\!\left(n \operatorname{acos}(x)\right) n \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; x \in \mathbb{C}
Fungrim symbol | Notation | Short description |
---|---|---|
ChebyshevT | Tn(x) | Chebyshev polynomial of the first kind |
Cos | cos(z) | Cosine |
ZZ | Z | Integers |
CC | C | Complex numbers |
Entry(ID("fda800"), Formula(Equal(ChebyshevT(n, x), Cos(Mul(n, Acos(x))))), Variables(n, x), Assumptions(And(Element(n, ZZ), Element(x, CC))))
T_{n}\!\left(x\right) = \cosh\!\left(n \operatorname{acosh}(x)\right) n \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; x \in \mathbb{C}
Fungrim symbol | Notation | Short description |
---|---|---|
ChebyshevT | Tn(x) | Chebyshev polynomial of the first kind |
ZZ | Z | Integers |
CC | C | Complex numbers |
Entry(ID("2fc479"), Formula(Equal(ChebyshevT(n, x), Cosh(Mul(n, Acosh(x))))), Variables(n, x), Assumptions(And(Element(n, ZZ), Element(x, CC))))
U_{n - 1}\!\left(x\right) \sqrt{1 - {x}^{2}} = \sin\!\left(n \operatorname{acos}(x)\right) n \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; x \in \mathbb{C}
Fungrim symbol | Notation | Short description |
---|---|---|
ChebyshevU | Un(x) | Chebyshev polynomial of the second kind |
Sqrt | z | Principal square root |
Pow | ab | Power |
Sin | sin(z) | Sine |
ZZ | Z | Integers |
CC | C | Complex numbers |
Entry(ID("b8fdcd"), Formula(Equal(Mul(ChebyshevU(Sub(n, 1), x), Sqrt(Sub(1, Pow(x, 2)))), Sin(Mul(n, Acos(x))))), Variables(n, x), Assumptions(And(Element(n, ZZ), Element(x, CC))))
T_{n}\!\left(\cos(x)\right) = \cos\!\left(n x\right) n \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; x \in \mathbb{C}
Fungrim symbol | Notation | Short description |
---|---|---|
ChebyshevT | Tn(x) | Chebyshev polynomial of the first kind |
Cos | cos(z) | Cosine |
ZZ | Z | Integers |
CC | C | Complex numbers |
Entry(ID("f4b3fa"), Formula(Equal(ChebyshevT(n, Cos(x)), Cos(Mul(n, x)))), Variables(n, x), Assumptions(And(Element(n, ZZ), Element(x, CC))))
U_{n}\!\left(\cos(x)\right) \sin(x) = \sin\!\left(n x\right) n \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; x \in \mathbb{C}
Fungrim symbol | Notation | Short description |
---|---|---|
ChebyshevU | Un(x) | Chebyshev polynomial of the second kind |
Cos | cos(z) | Cosine |
Sin | sin(z) | Sine |
ZZ | Z | Integers |
CC | C | Complex numbers |
Entry(ID("4c7aeb"), Formula(Equal(Mul(ChebyshevU(n, Cos(x)), Sin(x)), Sin(Mul(n, x)))), Variables(n, x), Assumptions(And(Element(n, ZZ), Element(x, CC))))
T_{2 n + 1}\!\left(\sin(x)\right) = {\left(-1\right)}^{n} \sin\!\left(\left(2 n + 1\right) x\right) n \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; x \in \mathbb{C}
Fungrim symbol | Notation | Short description |
---|---|---|
ChebyshevT | Tn(x) | Chebyshev polynomial of the first kind |
Sin | sin(z) | Sine |
Pow | ab | Power |
ZZ | Z | Integers |
CC | C | Complex numbers |
Entry(ID("9789ee"), Formula(Equal(ChebyshevT(Add(Mul(2, n), 1), Sin(x)), Mul(Pow(-1, n), Sin(Mul(Add(Mul(2, n), 1), x))))), Variables(n, x), Assumptions(And(Element(n, ZZ), Element(x, CC))))
T_{n}\!\left(x\right) = \frac{1}{2} \left({\left(x + \sqrt{{x}^{2} - 1}\right)}^{n} + {\left(x - \sqrt{{x}^{2} - 1}\right)}^{n}\right) n \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; x \in \mathbb{C}
Fungrim symbol | Notation | Short description |
---|---|---|
ChebyshevT | Tn(x) | Chebyshev polynomial of the first kind |
Pow | ab | Power |
Sqrt | z | Principal square root |
ZZ | Z | Integers |
CC | C | Complex numbers |
Entry(ID("0cbe75"), Formula(Equal(ChebyshevT(n, x), Mul(Div(1, 2), Add(Pow(Add(x, Sqrt(Sub(Pow(x, 2), 1))), n), Pow(Sub(x, Sqrt(Sub(Pow(x, 2), 1))), n))))), Variables(n, x), Assumptions(And(Element(n, ZZ), Element(x, CC))))
U_{n - 1}\!\left(x\right) \sqrt{{x}^{2} - 1} = \frac{1}{2} \left({\left(x + \sqrt{{x}^{2} - 1}\right)}^{n} - {\left(x - \sqrt{{x}^{2} - 1}\right)}^{n}\right) n \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; x \in \mathbb{C}
Fungrim symbol | Notation | Short description |
---|---|---|
ChebyshevU | Un(x) | Chebyshev polynomial of the second kind |
Sqrt | z | Principal square root |
Pow | ab | Power |
ZZ | Z | Integers |
CC | C | Complex numbers |
Entry(ID("61375f"), Formula(Equal(Mul(ChebyshevU(Sub(n, 1), x), Sqrt(Sub(Pow(x, 2), 1))), Mul(Div(1, 2), Sub(Pow(Add(x, Sqrt(Sub(Pow(x, 2), 1))), n), Pow(Sub(x, Sqrt(Sub(Pow(x, 2), 1))), n))))), Variables(n, x), Assumptions(And(Element(n, ZZ), Element(x, CC))))
T_{n}\!\left(x\right) + U_{n - 1}\!\left(x\right) \sqrt{{x}^{2} - 1} = {\left(x + \sqrt{{x}^{2} - 1}\right)}^{n} n \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; x \in \mathbb{C}
Fungrim symbol | Notation | Short description |
---|---|---|
ChebyshevT | Tn(x) | Chebyshev polynomial of the first kind |
ChebyshevU | Un(x) | Chebyshev polynomial of the second kind |
Sqrt | z | Principal square root |
Pow | ab | Power |
ZZ | Z | Integers |
CC | C | Complex numbers |
Entry(ID("fdf80d"), Formula(Equal(Add(ChebyshevT(n, x), Mul(ChebyshevU(Sub(n, 1), x), Sqrt(Sub(Pow(x, 2), 1)))), Pow(Add(x, Sqrt(Sub(Pow(x, 2), 1))), n))), Variables(n, x), Assumptions(And(Element(n, ZZ), Element(x, CC))))
T_{n}^{2}\!\left(x\right) + \left({x}^{2} - 1\right) U_{n - 1}^{2}\!\left(x\right) = 1 n \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; x \in \mathbb{C}
Fungrim symbol | Notation | Short description |
---|---|---|
Pow | ab | Power |
ChebyshevT | Tn(x) | Chebyshev polynomial of the first kind |
ChebyshevU | Un(x) | Chebyshev polynomial of the second kind |
ZZ | Z | Integers |
CC | C | Complex numbers |
Entry(ID("42eb01"), Formula(Equal(Add(Pow(ChebyshevT(n, x), 2), Mul(Sub(Pow(x, 2), 1), Pow(ChebyshevU(Sub(n, 1), x), 2))), 1)), Variables(n, x), Assumptions(And(Element(n, ZZ), Element(x, CC))))
T_{n}\!\left(\frac{x + {x}^{-1}}{2}\right) = \frac{{x}^{n} + {x}^{-n}}{2} n \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; x \in \mathbb{C} \setminus \left\{0\right\}
Fungrim symbol | Notation | Short description |
---|---|---|
ChebyshevT | Tn(x) | Chebyshev polynomial of the first kind |
Pow | ab | Power |
ZZ | Z | Integers |
CC | C | Complex numbers |
Entry(ID("5bd0ec"), Formula(Equal(ChebyshevT(n, Div(Add(x, Pow(x, -1)), 2)), Div(Add(Pow(x, n), Pow(x, Neg(n))), 2))), Variables(n, x), Assumptions(And(Element(n, ZZ), Element(x, SetMinus(CC, Set(0))))))
T_{n}\!\left(x\right) = {2}^{n - 1} \prod_{k=1}^{n} \left(x - \cos\!\left(\frac{2 k - 1}{2 n} \pi\right)\right) n \in \mathbb{Z}_{\ge 1} \;\mathbin{\operatorname{and}}\; x \in \mathbb{C}
Fungrim symbol | Notation | Short description |
---|---|---|
ChebyshevT | Tn(x) | Chebyshev polynomial of the first kind |
Pow | ab | Power |
Product | ∏nf(n) | Product |
Cos | cos(z) | Cosine |
Pi | π | The constant pi (3.14...) |
ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
CC | C | Complex numbers |
Entry(ID("305a29"), Formula(Equal(ChebyshevT(n, x), Mul(Pow(2, Sub(n, 1)), Product(Parentheses(Sub(x, Cos(Mul(Div(Sub(Mul(2, k), 1), Mul(2, n)), Pi)))), For(k, 1, n))))), Variables(n, x), Assumptions(And(Element(n, ZZGreaterEqual(1)), Element(x, CC))))
U_{n}\!\left(x\right) = {2}^{n} \prod_{k=1}^{n} \left(x - \cos\!\left(\frac{k}{n + 1} \pi\right)\right) n \in \mathbb{Z}_{\ge 0} \;\mathbin{\operatorname{and}}\; x \in \mathbb{C}
Fungrim symbol | Notation | Short description |
---|---|---|
ChebyshevU | Un(x) | Chebyshev polynomial of the second kind |
Pow | ab | Power |
Product | ∏nf(n) | Product |
Cos | cos(z) | Cosine |
Pi | π | The constant pi (3.14...) |
ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
CC | C | Complex numbers |
Entry(ID("f5fa23"), Formula(Equal(ChebyshevU(n, x), Mul(Pow(2, n), Product(Parentheses(Sub(x, Cos(Mul(Div(k, Add(n, 1)), Pi)))), For(k, 1, n))))), Variables(n, x), Assumptions(And(Element(n, ZZGreaterEqual(0)), Element(x, CC))))
T_{n}\!\left(x\right) = \frac{n}{2} \sum_{k=0}^{\left\lfloor n / 2 \right\rfloor} \frac{{\left(-1\right)}^{k}}{n - k} {n - k \choose k} {\left(2 x\right)}^{n - 2 k} n \in \mathbb{Z}_{\ge 1} \;\mathbin{\operatorname{and}}\; x \in \mathbb{C}
Fungrim symbol | Notation | Short description |
---|---|---|
ChebyshevT | Tn(x) | Chebyshev polynomial of the first kind |
Sum | ∑nf(n) | Sum |
Pow | ab | Power |
Binomial | (kn) | Binomial coefficient |
ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
CC | C | Complex numbers |
Entry(ID("99aa38"), Formula(Equal(ChebyshevT(n, x), Mul(Div(n, 2), Sum(Mul(Mul(Div(Pow(-1, k), Sub(n, k)), Binomial(Sub(n, k), k)), Pow(Mul(2, x), Sub(n, Mul(2, k)))), For(k, 0, Floor(Div(n, 2))))))), Variables(n, x), Assumptions(And(Element(n, ZZGreaterEqual(1)), Element(x, CC))))
U_{n}\!\left(x\right) = \sum_{k=0}^{\left\lfloor n / 2 \right\rfloor} {\left(-1\right)}^{k} {n - k \choose k} {\left(2 x\right)}^{n - 2 k} n \in \mathbb{Z}_{\ge 1} \;\mathbin{\operatorname{and}}\; x \in \mathbb{C}
Fungrim symbol | Notation | Short description |
---|---|---|
ChebyshevU | Un(x) | Chebyshev polynomial of the second kind |
Sum | ∑nf(n) | Sum |
Pow | ab | Power |
Binomial | (kn) | Binomial coefficient |
ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
CC | C | Complex numbers |
Entry(ID("50cb6b"), Formula(Equal(ChebyshevU(n, x), Sum(Mul(Mul(Pow(-1, k), Binomial(Sub(n, k), k)), Pow(Mul(2, x), Sub(n, Mul(2, k)))), For(k, 0, Floor(Div(n, 2)))))), Variables(n, x), Assumptions(And(Element(n, ZZGreaterEqual(1)), Element(x, CC))))
T_{n}\!\left(x\right) = \sum_{k=0}^{\left\lfloor n / 2 \right\rfloor} {n \choose 2 k} {\left({x}^{2} - 1\right)}^{k} {x}^{n - 2 k} n \in \mathbb{Z}_{\ge 0} \;\mathbin{\operatorname{and}}\; x \in \mathbb{C}
Fungrim symbol | Notation | Short description |
---|---|---|
ChebyshevT | Tn(x) | Chebyshev polynomial of the first kind |
Sum | ∑nf(n) | Sum |
Binomial | (kn) | Binomial coefficient |
Pow | ab | Power |
ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
CC | C | Complex numbers |
Entry(ID("ae791d"), Formula(Equal(ChebyshevT(n, x), Sum(Mul(Mul(Binomial(n, Mul(2, k)), Pow(Sub(Pow(x, 2), 1), k)), Pow(x, Sub(n, Mul(2, k)))), For(k, 0, Floor(Div(n, 2)))))), Variables(n, x), Assumptions(And(Element(n, ZZGreaterEqual(0)), Element(x, CC))))
T_{n}\!\left(x\right) = \frac{n}{2} \sum_{k=0}^{\left\lfloor n / 2 \right\rfloor} \frac{{\left(-1\right)}^{k} \left(n - k - 1\right)!}{k ! \left(n - 2 k\right)!} {\left(2 x\right)}^{n - 2 k} n \in \mathbb{Z}_{\ge 1} \;\mathbin{\operatorname{and}}\; x \in \mathbb{C}
Fungrim symbol | Notation | Short description |
---|---|---|
ChebyshevT | Tn(x) | Chebyshev polynomial of the first kind |
Sum | ∑nf(n) | Sum |
Pow | ab | Power |
Factorial | n! | Factorial |
ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
CC | C | Complex numbers |
Entry(ID("4f3e30"), Formula(Equal(ChebyshevT(n, x), Mul(Div(n, 2), Sum(Mul(Div(Mul(Pow(-1, k), Factorial(Sub(Sub(n, k), 1))), Mul(Factorial(k), Factorial(Sub(n, Mul(2, k))))), Pow(Mul(2, x), Sub(n, Mul(2, k)))), For(k, 0, Floor(Div(n, 2))))))), Variables(n, x), Assumptions(And(Element(n, ZZGreaterEqual(1)), Element(x, CC))))
T_{n}\!\left(x\right) = n \sum_{k=0}^{n} \frac{{2}^{k} \left(n + k - 1\right)!}{\left(n - k\right)! \left(2 k\right)!} {\left(x - 1\right)}^{k} n \in \mathbb{Z}_{\ge 1} \;\mathbin{\operatorname{and}}\; x \in \mathbb{C}
Fungrim symbol | Notation | Short description |
---|---|---|
ChebyshevT | Tn(x) | Chebyshev polynomial of the first kind |
Sum | ∑nf(n) | Sum |
Pow | ab | Power |
Factorial | n! | Factorial |
ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
CC | C | Complex numbers |
Entry(ID("e9232b"), Formula(Equal(ChebyshevT(n, x), Mul(n, Sum(Mul(Div(Mul(Pow(2, k), Factorial(Sub(Add(n, k), 1))), Mul(Factorial(Sub(n, k)), Factorial(Mul(2, k)))), Pow(Sub(x, 1), k)), For(k, 0, n))))), Variables(n, x), Assumptions(And(Element(n, ZZGreaterEqual(1)), Element(x, CC))))
U_{n}\!\left(x\right) = \sum_{k=0}^{\left\lfloor n / 2 \right\rfloor} {n + 1 \choose 2 k + 1} {\left({x}^{2} - 1\right)}^{k} {x}^{n - 2 k} n \in \mathbb{Z}_{\ge 0} \;\mathbin{\operatorname{and}}\; x \in \mathbb{C}
Fungrim symbol | Notation | Short description |
---|---|---|
ChebyshevU | Un(x) | Chebyshev polynomial of the second kind |
Sum | ∑nf(n) | Sum |
Binomial | (kn) | Binomial coefficient |
Pow | ab | Power |
ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
CC | C | Complex numbers |
Entry(ID("4e914f"), Formula(Equal(ChebyshevU(n, x), Sum(Mul(Mul(Binomial(Add(n, 1), Add(Mul(2, k), 1)), Pow(Sub(Pow(x, 2), 1), k)), Pow(x, Sub(n, Mul(2, k)))), For(k, 0, Floor(Div(n, 2)))))), Variables(n, x), Assumptions(And(Element(n, ZZGreaterEqual(0)), Element(x, CC))))
U_{n}\!\left(x\right) = \sum_{k=0}^{n} \frac{{2}^{k} \left(n + k + 1\right)!}{\left(n - k\right)! \left(2 k + 1\right)!} {\left(x - 1\right)}^{k} n \in \mathbb{Z}_{\ge 1} \;\mathbin{\operatorname{and}}\; x \in \mathbb{C}
Fungrim symbol | Notation | Short description |
---|---|---|
ChebyshevU | Un(x) | Chebyshev polynomial of the second kind |
Sum | ∑nf(n) | Sum |
Pow | ab | Power |
Factorial | n! | Factorial |
ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
CC | C | Complex numbers |
Entry(ID("a9077a"), Formula(Equal(ChebyshevU(n, x), Sum(Mul(Div(Mul(Pow(2, k), Factorial(Add(Add(n, k), 1))), Mul(Factorial(Sub(n, k)), Factorial(Add(Mul(2, k), 1)))), Pow(Sub(x, 1), k)), For(k, 0, n)))), Variables(n, x), Assumptions(And(Element(n, ZZGreaterEqual(1)), Element(x, CC))))
T_{n}\!\left(x\right) = \,{}_2F_1\!\left(-n, n, \frac{1}{2}, \frac{1 - x}{2}\right) n \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; x \in \mathbb{C}
Fungrim symbol | Notation | Short description |
---|---|---|
ChebyshevT | Tn(x) | Chebyshev polynomial of the first kind |
Hypergeometric2F1 | 2F1(a,b,c,z) | Gauss hypergeometric function |
ZZ | Z | Integers |
CC | C | Complex numbers |
Entry(ID("382679"), Formula(Equal(ChebyshevT(n, x), Hypergeometric2F1(Neg(n), n, Div(1, 2), Div(Sub(1, x), 2)))), Variables(n, x), Assumptions(And(Element(n, ZZ), Element(x, CC))))
U_{n}\!\left(x\right) = \left(n + 1\right) \,{}_2F_1\!\left(-n, n + 2, \frac{3}{2}, \frac{1 - x}{2}\right) n \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; x \in \mathbb{C}
Fungrim symbol | Notation | Short description |
---|---|---|
ChebyshevU | Un(x) | Chebyshev polynomial of the second kind |
Hypergeometric2F1 | 2F1(a,b,c,z) | Gauss hypergeometric function |
ZZ | Z | Integers |
CC | C | Complex numbers |
Entry(ID("ce9a39"), Formula(Equal(ChebyshevU(n, x), Mul(Add(n, 1), Hypergeometric2F1(Neg(n), Add(n, 2), Div(3, 2), Div(Sub(1, x), 2))))), Variables(n, x), Assumptions(And(Element(n, ZZ), Element(x, CC))))
\sum_{n=0}^{\infty} T_{n}\!\left(x\right) {z}^{n} = \frac{1 - x z}{1 - 2 x z + {z}^{2}} x \in \left[-1, 1\right] \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \left|z\right| < 1
Fungrim symbol | Notation | Short description |
---|---|---|
Sum | ∑nf(n) | Sum |
ChebyshevT | Tn(x) | Chebyshev polynomial of the first kind |
Pow | ab | Power |
Infinity | ∞ | Positive infinity |
ClosedInterval | [a,b] | Closed interval |
CC | C | Complex numbers |
Abs | ∣z∣ | Absolute value |
Entry(ID("685d1a"), Formula(Equal(Sum(Mul(ChebyshevT(n, x), Pow(z, n)), For(n, 0, Infinity)), Div(Sub(1, Mul(x, z)), Add(Sub(1, Mul(Mul(2, x), z)), Pow(z, 2))))), Variables(x, z), Assumptions(And(Element(x, ClosedInterval(-1, 1)), Element(z, CC), Less(Abs(z), 1))))
\sum_{n=0}^{\infty} U_{n}\!\left(x\right) {z}^{n} = \frac{1}{1 - 2 x z + {z}^{2}} x \in \left[-1, 1\right] \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \left|z\right| < 1
Fungrim symbol | Notation | Short description |
---|---|---|
Sum | ∑nf(n) | Sum |
ChebyshevU | Un(x) | Chebyshev polynomial of the second kind |
Pow | ab | Power |
Infinity | ∞ | Positive infinity |
ClosedInterval | [a,b] | Closed interval |
CC | C | Complex numbers |
Abs | ∣z∣ | Absolute value |
Entry(ID("b5049d"), Formula(Equal(Sum(Mul(ChebyshevU(n, x), Pow(z, n)), For(n, 0, Infinity)), Div(1, Add(Sub(1, Mul(Mul(2, x), z)), Pow(z, 2))))), Variables(x, z), Assumptions(And(Element(x, ClosedInterval(-1, 1)), Element(z, CC), Less(Abs(z), 1))))
\sum_{n=1}^{\infty} T_{n}\!\left(x\right) \frac{{z}^{n}}{n} = -\frac{1}{2} \log\!\left(1 - 2 x z + {z}^{2}\right) x \in \left[-1, 1\right] \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \left|z\right| < 1
Fungrim symbol | Notation | Short description |
---|---|---|
Sum | ∑nf(n) | Sum |
ChebyshevT | Tn(x) | Chebyshev polynomial of the first kind |
Pow | ab | Power |
Infinity | ∞ | Positive infinity |
Log | log(z) | Natural logarithm |
ClosedInterval | [a,b] | Closed interval |
CC | C | Complex numbers |
Abs | ∣z∣ | Absolute value |
Entry(ID("27b2bb"), Formula(Equal(Sum(Mul(ChebyshevT(n, x), Div(Pow(z, n), n)), For(n, 1, Infinity)), Mul(Neg(Div(1, 2)), Log(Add(Sub(1, Mul(Mul(2, x), z)), Pow(z, 2)))))), Variables(x, z), Assumptions(And(Element(x, ClosedInterval(-1, 1)), Element(z, CC), Less(Abs(z), 1))))
\sum_{n=0}^{\infty} T_{n}\!\left(x\right) \frac{{z}^{n}}{n !} = {e}^{z x} \cosh\!\left(z \sqrt{{x}^{2} - 1}\right) x \in \mathbb{C} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C}
Fungrim symbol | Notation | Short description |
---|---|---|
Sum | ∑nf(n) | Sum |
ChebyshevT | Tn(x) | Chebyshev polynomial of the first kind |
Pow | ab | Power |
Factorial | n! | Factorial |
Infinity | ∞ | Positive infinity |
Exp | ez | Exponential function |
Sqrt | z | Principal square root |
CC | C | Complex numbers |
Entry(ID("9d7c61"), Formula(Equal(Sum(Mul(ChebyshevT(n, x), Div(Pow(z, n), Factorial(n))), For(n, 0, Infinity)), Mul(Exp(Mul(z, x)), Cosh(Mul(z, Sqrt(Sub(Pow(x, 2), 1))))))), Variables(x, z), Assumptions(And(Element(x, CC), Element(z, CC))))
\sum_{n=0}^{\infty} U_{n}\!\left(x\right) \frac{{z}^{n}}{n !} = {e}^{z x} \left(\cosh\!\left(z \sqrt{{x}^{2} - 1}\right) + z x \operatorname{sinc}\!\left(i z \sqrt{{x}^{2} - 1}\right)\right) x \in \mathbb{C} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C}
Fungrim symbol | Notation | Short description |
---|---|---|
Sum | ∑nf(n) | Sum |
ChebyshevU | Un(x) | Chebyshev polynomial of the second kind |
Pow | ab | Power |
Factorial | n! | Factorial |
Infinity | ∞ | Positive infinity |
Exp | ez | Exponential function |
Sqrt | z | Principal square root |
Sinc | sinc(z) | Sinc function |
ConstI | i | Imaginary unit |
CC | C | Complex numbers |
Entry(ID("fff8ff"), Formula(Equal(Sum(Mul(ChebyshevU(n, x), Div(Pow(z, n), Factorial(n))), For(n, 0, Infinity)), Mul(Exp(Mul(z, x)), Add(Cosh(Mul(z, Sqrt(Sub(Pow(x, 2), 1)))), Mul(Mul(z, x), Sinc(Mul(Mul(ConstI, z), Sqrt(Sub(Pow(x, 2), 1))))))))), Variables(x, z), Assumptions(And(Element(x, CC), Element(z, CC))))
T'_{n}(x) = n U_{n - 1}\!\left(x\right) n \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; x \in \mathbb{C}
Fungrim symbol | Notation | Short description |
---|---|---|
ComplexDerivative | dzdf(z) | Complex derivative |
ChebyshevT | Tn(x) | Chebyshev polynomial of the first kind |
ChebyshevU | Un(x) | Chebyshev polynomial of the second kind |
ZZ | Z | Integers |
CC | C | Complex numbers |
Entry(ID("1a0d11"), Formula(Equal(ComplexDerivative(ChebyshevT(n, x), For(x, x)), Mul(n, ChebyshevU(Sub(n, 1), x)))), Variables(n, x), Assumptions(And(Element(n, ZZ), Element(x, CC))))
T''_{n}(x) = \frac{n \left(n T_{n}\!\left(x\right) - x U_{n - 1}\!\left(x\right)\right)}{{x}^{2} - 1} n \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; x \in \mathbb{C} \setminus \left\{-1, 1\right\}
Fungrim symbol | Notation | Short description |
---|---|---|
ComplexDerivative | dzdf(z) | Complex derivative |
ChebyshevT | Tn(x) | Chebyshev polynomial of the first kind |
ChebyshevU | Un(x) | Chebyshev polynomial of the second kind |
Pow | ab | Power |
ZZ | Z | Integers |
CC | C | Complex numbers |
Entry(ID("05fe07"), Formula(Equal(ComplexDerivative(ChebyshevT(n, x), For(x, x, 2)), Div(Mul(n, Sub(Mul(n, ChebyshevT(n, x)), Mul(x, ChebyshevU(Sub(n, 1), x)))), Sub(Pow(x, 2), 1)))), Variables(n, x), Assumptions(And(Element(n, ZZ), Element(x, SetMinus(CC, Set(-1, 1))))))
U'_{n}(x) = \frac{\left(n + 1\right) T_{n + 1}\!\left(x\right) - x U_{n}\!\left(x\right)}{{x}^{2} - 1} n \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; x \in \mathbb{C} \setminus \left\{-1, 1\right\}
Fungrim symbol | Notation | Short description |
---|---|---|
ComplexDerivative | dzdf(z) | Complex derivative |
ChebyshevU | Un(x) | Chebyshev polynomial of the second kind |
ChebyshevT | Tn(x) | Chebyshev polynomial of the first kind |
Pow | ab | Power |
ZZ | Z | Integers |
CC | C | Complex numbers |
Entry(ID("35e13b"), Formula(Equal(ComplexDerivative(ChebyshevU(n, x), For(x, x)), Div(Sub(Mul(Add(n, 1), ChebyshevT(Add(n, 1), x)), Mul(x, ChebyshevU(n, x))), Sub(Pow(x, 2), 1)))), Variables(n, x), Assumptions(And(Element(n, ZZ), Element(x, SetMinus(CC, Set(-1, 1))))))
{T}^{(r)}_{n}(x) = \frac{\left(n\right)_{r} \left(n - r + 1\right)_{r}}{\left(2 r - 1\right)!!} \,{}_2F_1\!\left(r + n, r - n, \frac{1}{2} + r, \frac{1 - x}{2}\right) n \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; r \in \mathbb{Z}_{\ge 0} \;\mathbin{\operatorname{and}}\; x \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \left(r \le n \;\mathbin{\operatorname{or}}\; x \ne -1\right)
Fungrim symbol | Notation | Short description |
---|---|---|
ComplexDerivative | dzdf(z) | Complex derivative |
ChebyshevT | Tn(x) | Chebyshev polynomial of the first kind |
RisingFactorial | (z)k | Rising factorial |
Hypergeometric2F1 | 2F1(a,b,c,z) | Gauss hypergeometric function |
ZZ | Z | Integers |
ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
CC | C | Complex numbers |
Entry(ID("12ce84"), Formula(Equal(ComplexDerivative(ChebyshevT(n, x), For(x, x, r)), Mul(Div(Mul(RisingFactorial(n, r), RisingFactorial(Add(Sub(n, r), 1), r)), DoubleFactorial(Sub(Mul(2, r), 1))), Hypergeometric2F1(Add(r, n), Sub(r, n), Add(Div(1, 2), r), Div(Sub(1, x), 2))))), Variables(n, r, x), Assumptions(And(Element(n, ZZ), Element(r, ZZGreaterEqual(0)), Element(x, CC), Or(LessEqual(r, n), NotEqual(x, -1)))))
{U}^{(r)}_{n}(x) = \frac{\left(n + 1\right)_{r + 1} \left(n - r + 1\right)_{r}}{\left(2 r + 1\right)!!} \,{}_2F_1\!\left(r + n + 2, r - n, \frac{3}{2} + r, \frac{1 - x}{2}\right) n \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; r \in \mathbb{Z}_{\ge 0} \;\mathbin{\operatorname{and}}\; x \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \left(r \le n \;\mathbin{\operatorname{or}}\; x \ne -1\right)
Fungrim symbol | Notation | Short description |
---|---|---|
ComplexDerivative | dzdf(z) | Complex derivative |
ChebyshevU | Un(x) | Chebyshev polynomial of the second kind |
RisingFactorial | (z)k | Rising factorial |
Hypergeometric2F1 | 2F1(a,b,c,z) | Gauss hypergeometric function |
ZZ | Z | Integers |
ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
CC | C | Complex numbers |
Entry(ID("9d66de"), Formula(Equal(ComplexDerivative(ChebyshevU(n, x), For(x, x, r)), Mul(Div(Mul(RisingFactorial(Add(n, 1), Add(r, 1)), RisingFactorial(Add(Sub(n, r), 1), r)), DoubleFactorial(Add(Mul(2, r), 1))), Hypergeometric2F1(Add(Add(r, n), 2), Sub(r, n), Add(Div(3, 2), r), Div(Sub(1, x), 2))))), Variables(n, r, x), Assumptions(And(Element(n, ZZ), Element(r, ZZGreaterEqual(0)), Element(x, CC), Or(LessEqual(r, n), NotEqual(x, -1)))))
{T}^{(r)}_{n}(1) = \frac{\left(n\right)_{r} \left(n - r + 1\right)_{r}}{\left(2 r - 1\right)!!} n \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; r \in \mathbb{Z}_{\ge 0}
Fungrim symbol | Notation | Short description |
---|---|---|
ComplexDerivative | dzdf(z) | Complex derivative |
ChebyshevT | Tn(x) | Chebyshev polynomial of the first kind |
RisingFactorial | (z)k | Rising factorial |
ZZ | Z | Integers |
ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
Entry(ID("a68f0e"), Formula(Equal(ComplexDerivative(ChebyshevT(n, x), For(x, 1, r)), Div(Mul(RisingFactorial(n, r), RisingFactorial(Add(Sub(n, r), 1), r)), DoubleFactorial(Sub(Mul(2, r), 1))))), Variables(n, r), Assumptions(And(Element(n, ZZ), Element(r, ZZGreaterEqual(0)))))
{U}^{(r)}_{n}(1) = \frac{\left(n + 1\right)_{r + 1} \left(n - r + 1\right)_{r}}{\left(2 r + 1\right)!!} n \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; r \in \mathbb{Z}_{\ge 0}
Fungrim symbol | Notation | Short description |
---|---|---|
ComplexDerivative | dzdf(z) | Complex derivative |
ChebyshevU | Un(x) | Chebyshev polynomial of the second kind |
RisingFactorial | (z)k | Rising factorial |
ZZ | Z | Integers |
ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
Entry(ID("b6b014"), Formula(Equal(ComplexDerivative(ChebyshevU(n, x), For(x, 1, r)), Div(Mul(RisingFactorial(Add(n, 1), Add(r, 1)), RisingFactorial(Add(Sub(n, r), 1), r)), DoubleFactorial(Add(Mul(2, r), 1))))), Variables(n, r), Assumptions(And(Element(n, ZZ), Element(r, ZZGreaterEqual(0)))))
{T}^{(r)}_{n}(x) = \frac{\sqrt{\pi}}{{\left(x - 1\right)}^{r}} \,{}_3{\textbf F}_2\!\left(1, -n, n, \frac{1}{2}, 1 - r, \frac{1 - x}{2}\right) n \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; r \in \mathbb{Z}_{\ge 0} \;\mathbin{\operatorname{and}}\; x \in \mathbb{C} \setminus \left\{-1, 1\right\}
Fungrim symbol | Notation | Short description |
---|---|---|
ComplexDerivative | dzdf(z) | Complex derivative |
ChebyshevT | Tn(x) | Chebyshev polynomial of the first kind |
Sqrt | z | Principal square root |
Pi | π | The constant pi (3.14...) |
Pow | ab | Power |
ZZ | Z | Integers |
ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
CC | C | Complex numbers |
Entry(ID("6582c4"), Formula(Equal(ComplexDerivative(ChebyshevT(n, x), For(x, x, r)), Mul(Div(Sqrt(Pi), Pow(Sub(x, 1), r)), Hypergeometric3F2Regularized(1, Neg(n), n, Div(1, 2), Sub(1, r), Div(Sub(1, x), 2))))), Variables(n, r, x), Assumptions(And(Element(n, ZZ), Element(r, ZZGreaterEqual(0)), Element(x, SetMinus(CC, Set(-1, 1))))), References("http://functions.wolfram.com/Polynomials/ChebyshevT/20/02/01/0002/"))
{U}^{(r)}_{n}(x) = \frac{\sqrt{\pi} \left(n + 1\right)}{2 {\left(x - 1\right)}^{r}} \,{}_3{\textbf F}_2\!\left(1, -n, n + 2, \frac{3}{2}, 1 - r, \frac{1 - x}{2}\right) n \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; r \in \mathbb{Z}_{\ge 0} \;\mathbin{\operatorname{and}}\; x \in \mathbb{C} \setminus \left\{-1, 1\right\}
Fungrim symbol | Notation | Short description |
---|---|---|
ComplexDerivative | dzdf(z) | Complex derivative |
ChebyshevU | Un(x) | Chebyshev polynomial of the second kind |
Sqrt | z | Principal square root |
Pi | π | The constant pi (3.14...) |
Pow | ab | Power |
ZZ | Z | Integers |
ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
CC | C | Complex numbers |
Entry(ID("e1797b"), Formula(Equal(ComplexDerivative(ChebyshevU(n, x), For(x, x, r)), Mul(Div(Mul(Sqrt(Pi), Add(n, 1)), Mul(2, Pow(Sub(x, 1), r))), Hypergeometric3F2Regularized(1, Neg(n), Add(n, 2), Div(3, 2), Sub(1, r), Div(Sub(1, x), 2))))), Variables(n, r, x), Assumptions(And(Element(n, ZZ), Element(r, ZZGreaterEqual(0)), Element(x, SetMinus(CC, Set(-1, 1))))), References("http://functions.wolfram.com/Polynomials/ChebyshevU/20/02/01/0002/"))
\left|T_{n}\!\left(x\right)\right| \le 1 n \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; x \in \left[-1, 1\right]
Fungrim symbol | Notation | Short description |
---|---|---|
Abs | ∣z∣ | Absolute value |
ChebyshevT | Tn(x) | Chebyshev polynomial of the first kind |
ZZ | Z | Integers |
ClosedInterval | [a,b] | Closed interval |
Entry(ID("15dd69"), Formula(LessEqual(Abs(ChebyshevT(n, x)), 1)), Variables(n, x), Assumptions(And(Element(n, ZZ), Element(x, ClosedInterval(-1, 1)))))
\left|U_{n}\!\left(x\right)\right| \le \left|n + 1\right| n \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; x \in \left[-1, 1\right]
Fungrim symbol | Notation | Short description |
---|---|---|
Abs | ∣z∣ | Absolute value |
ChebyshevU | Un(x) | Chebyshev polynomial of the second kind |
ZZ | Z | Integers |
ClosedInterval | [a,b] | Closed interval |
Entry(ID("3c662e"), Formula(LessEqual(Abs(ChebyshevU(n, x)), Abs(Add(n, 1)))), Variables(n, x), Assumptions(And(Element(n, ZZ), Element(x, ClosedInterval(-1, 1)))))
\left|T_{n}\!\left(z\right)\right| \le \left|T_{n}\!\left(i \left|z\right|\right)\right| n \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C}
Fungrim symbol | Notation | Short description |
---|---|---|
Abs | ∣z∣ | Absolute value |
ChebyshevT | Tn(x) | Chebyshev polynomial of the first kind |
ConstI | i | Imaginary unit |
ZZ | Z | Integers |
CC | C | Complex numbers |
Entry(ID("c718ea"), Formula(LessEqual(Abs(ChebyshevT(n, z)), Abs(ChebyshevT(n, Mul(ConstI, Abs(z)))))), Variables(n, z), Assumptions(And(Element(n, ZZ), Element(z, CC))))
\left|U_{n}\!\left(z\right)\right| \le \left|U_{n}\!\left(i \left|z\right|\right)\right| n \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C}
Fungrim symbol | Notation | Short description |
---|---|---|
Abs | ∣z∣ | Absolute value |
ChebyshevU | Un(x) | Chebyshev polynomial of the second kind |
ConstI | i | Imaginary unit |
ZZ | Z | Integers |
CC | C | Complex numbers |
Entry(ID("0b3fd6"), Formula(LessEqual(Abs(ChebyshevU(n, z)), Abs(ChebyshevU(n, Mul(ConstI, Abs(z)))))), Variables(n, z), Assumptions(And(Element(n, ZZ), Element(z, CC))))
\left|T_{n}\!\left(z\right)\right| \le {\left(\left|z\right| + \sqrt{{\left|z\right|}^{2} + 1}\right)}^{n} n \in \mathbb{Z}_{\ge 0} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C}
Fungrim symbol | Notation | Short description |
---|---|---|
Abs | ∣z∣ | Absolute value |
ChebyshevT | Tn(x) | Chebyshev polynomial of the first kind |
Pow | ab | Power |
Sqrt | z | Principal square root |
ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
CC | C | Complex numbers |
Entry(ID("443759"), Formula(LessEqual(Abs(ChebyshevT(n, z)), Pow(Add(Abs(z), Sqrt(Add(Pow(Abs(z), 2), 1))), n))), Variables(n, z), Assumptions(And(Element(n, ZZGreaterEqual(0)), Element(z, CC))))
\left|U_{n}\!\left(z\right)\right| \le {\left(\left|z\right| + \sqrt{{\left|z\right|}^{2} + 1}\right)}^{n} n \in \mathbb{Z}_{\ge 0} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C}
Fungrim symbol | Notation | Short description |
---|---|---|
Abs | ∣z∣ | Absolute value |
ChebyshevU | Un(x) | Chebyshev polynomial of the second kind |
Pow | ab | Power |
Sqrt | z | Principal square root |
ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
CC | C | Complex numbers |
Entry(ID("2a4b9d"), Formula(LessEqual(Abs(ChebyshevU(n, z)), Pow(Add(Abs(z), Sqrt(Add(Pow(Abs(z), 2), 1))), n))), Variables(n, z), Assumptions(And(Element(n, ZZGreaterEqual(0)), Element(z, CC))))
{\left(T_{n}\!\left(x\right)\right)}^{2} - T_{n - 1}\!\left(x\right) T_{n + 1}\!\left(x\right) \ge 0 n \in \mathbb{Z}_{\ge 1} \;\mathbin{\operatorname{and}}\; x \in \left[-1, 1\right]
Fungrim symbol | Notation | Short description |
---|---|---|
Pow | ab | Power |
ChebyshevT | Tn(x) | Chebyshev polynomial of the first kind |
ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
ClosedInterval | [a,b] | Closed interval |
Entry(ID("b0c84b"), Formula(GreaterEqual(Sub(Pow(Parentheses(ChebyshevT(n, x)), 2), Mul(ChebyshevT(Sub(n, 1), x), ChebyshevT(Add(n, 1), x))), 0)), Variables(n, x), Assumptions(And(Element(n, ZZGreaterEqual(1)), Element(x, ClosedInterval(-1, 1)))))
{\left(T_{n}\!\left(x\right)\right)}^{2} - T_{n - 1}\!\left(x\right) T_{n + 1}\!\left(x\right) > 0 n \in \mathbb{Z}_{\ge 1} \;\mathbin{\operatorname{and}}\; x \in \left(-1, 1\right)
Fungrim symbol | Notation | Short description |
---|---|---|
Pow | ab | Power |
ChebyshevT | Tn(x) | Chebyshev polynomial of the first kind |
ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
OpenInterval | (a,b) | Open interval |
Entry(ID("2ada0f"), Formula(Greater(Sub(Pow(Parentheses(ChebyshevT(n, x)), 2), Mul(ChebyshevT(Sub(n, 1), x), ChebyshevT(Add(n, 1), x))), 0)), Variables(n, x), Assumptions(And(Element(n, ZZGreaterEqual(1)), Element(x, OpenInterval(-1, 1)))))
\left|{T}^{(r)}_{n - 1}(x)\right| \le \left|{T}^{(r)}_{n}(x)\right| n \in \mathbb{Z}_{\ge 1} \;\mathbin{\operatorname{and}}\; x \in \mathbb{R} \;\mathbin{\operatorname{and}}\; \left|x\right| \ge 1
Fungrim symbol | Notation | Short description |
---|---|---|
Abs | ∣z∣ | Absolute value |
ComplexDerivative | dzdf(z) | Complex derivative |
ChebyshevT | Tn(x) | Chebyshev polynomial of the first kind |
ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
RR | R | Real numbers |
Entry(ID("54be3e"), Formula(LessEqual(Abs(ComplexDerivative(ChebyshevT(Sub(n, 1), x), For(x, x, r))), Abs(ComplexDerivative(ChebyshevT(n, x), For(x, x, r))))), Variables(n, r, x), Assumptions(And(Element(n, ZZGreaterEqual(1)), Element(x, RR), GreaterEqual(Abs(x), 1))), References("V. V. Prasolov, Polynomials, Springer, 2004, ISBN 978-3-642-03980-5. Theorem 3.14.10."))
T_{n}\!\left(x y\right) \le T_{n}\!\left(x\right) T_{n}\!\left(y\right) n \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; x \in \left[1, \infty\right) \;\mathbin{\operatorname{and}}\; y \in \left[1, \infty\right)
Fungrim symbol | Notation | Short description |
---|---|---|
ChebyshevT | Tn(x) | Chebyshev polynomial of the first kind |
ZZ | Z | Integers |
ClosedOpenInterval | [a,b) | Closed-open interval |
Infinity | ∞ | Positive infinity |
Entry(ID("f61927"), Formula(LessEqual(ChebyshevT(n, Mul(x, y)), Mul(ChebyshevT(n, x), ChebyshevT(n, y)))), Variables(n, x, y), Assumptions(And(Element(n, ZZ), Element(x, ClosedOpenInterval(1, Infinity)), Element(y, ClosedOpenInterval(1, Infinity)))), References("V. V. Prasolov, Polynomials, Springer, 2004, ISBN 978-3-642-03980-5. Theorem 3.14.11.", "R. Askey, An inequality for Tchebycheff polynomials and extensions, Journal of Approximation Theory, 1975, Volume 14, pp 1-11"))
Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.
2021-03-15 19:12:00.328586 UTC