References:
- David M. Bradley, Representations of Catalan's constant, https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.26.1879
- https://en.wikipedia.org/wiki/Catalan's_constant
- http://mathworld.wolfram.com/CatalansConstant.html
- https://doi.org/10.1017/mag.2017.4
Definitions:
Fungrim symbol | Notation | Short description |
---|
ConstCatalan | G
| Catalan's constant |
Source code for this entry:
Entry(ID("f7b6aa"),
SymbolDefinition(ConstCatalan, ConstCatalan, "Catalan's constant"),
References("David M. Bradley, Representations of Catalan's constant, https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.26.1879", "https://en.wikipedia.org/wiki/Catalan's_constant", "http://mathworld.wolfram.com/CatalansConstant.html", "https://doi.org/10.1017/mag.2017.4"))
G∈[0.91596559417721901505460351493238411077414937428167±2.14⋅10−51]
TeX:
G \in \left[0.91596559417721901505460351493238411077414937428167 \pm 2.14 \cdot 10^{-51}\right]
Definitions:
Fungrim symbol | Notation | Short description |
---|
ConstCatalan | G
| Catalan's constant |
Source code for this entry:
Entry(ID("6a83ad"),
Formula(Element(ConstCatalan, RealBall(Decimal("0.91596559417721901505460351493238411077414937428167"), Decimal("2.14e-51")))))
G=81(ψ′(41)−π2)
TeX:
G = \frac{1}{8} \left(\psi'\!\left(\frac{1}{4}\right) - {\pi}^{2}\right)
Definitions:
Fungrim symbol | Notation | Short description |
---|
ConstCatalan | G
| Catalan's constant |
DigammaFunction | ψ(z)
| Digamma function |
Pow | ab
| Power |
Pi | π
| The constant pi (3.14...) |
Source code for this entry:
Entry(ID("2744d4"),
Formula(Equal(ConstCatalan, Mul(Div(1, 8), Sub(DigammaFunction(Div(1, 4), 1), Pow(Pi, 2))))))
G=161(ζ(2,41)−ζ(2,43))
TeX:
G = \frac{1}{16} \left(\zeta\!\left(2, \frac{1}{4}\right) - \zeta\!\left(2, \frac{3}{4}\right)\right)
Definitions:
Fungrim symbol | Notation | Short description |
---|
ConstCatalan | G
| Catalan's constant |
HurwitzZeta | ζ(s,a)
| Hurwitz zeta function |
Source code for this entry:
Entry(ID("e85723"),
Formula(Equal(ConstCatalan, Mul(Div(1, 16), Sub(HurwitzZeta(2, Div(1, 4)), HurwitzZeta(2, Div(3, 4)))))))
G=Im(Li2(i))
TeX:
G = \operatorname{Im}\!\left(\operatorname{Li}_{2}\!\left(i\right)\right)
Definitions:
Fungrim symbol | Notation | Short description |
---|
ConstCatalan | G
| Catalan's constant |
Im | Im(z)
| Imaginary part |
ConstI | i
| Imaginary unit |
Source code for this entry:
Entry(ID("1d65c2"),
Formula(Equal(ConstCatalan, Im(PolyLog(2, ConstI)))))
G=L(2,χ4.3)
TeX:
G = L\!\left(2, \chi_{4 \, . \, 3}\right)
Definitions:
Fungrim symbol | Notation | Short description |
---|
ConstCatalan | G
| Catalan's constant |
DirichletL | L(s,χ)
| Dirichlet L-function |
DirichletCharacter | χq.ℓ
| Dirichlet character |
Source code for this entry:
Entry(ID("9e9922"),
Formula(Equal(ConstCatalan, DirichletL(2, DirichletCharacter(4, 3)))))
G=41Φ(−1,2,21)
TeX:
G = \frac{1}{4} \Phi\!\left(-1, 2, \frac{1}{2}\right)
Definitions:
Fungrim symbol | Notation | Short description |
---|
ConstCatalan | G
| Catalan's constant |
Source code for this entry:
Entry(ID("4c166d"),
Formula(Equal(ConstCatalan, Mul(Div(1, 4), LerchPhi(-1, 2, Div(1, 2))))))
G=3F2(21,21,1,23,23,−1)
TeX:
G = \,{}_3F_2\!\left(\frac{1}{2}, \frac{1}{2}, 1, \frac{3}{2}, \frac{3}{2}, -1\right)
Definitions:
Fungrim symbol | Notation | Short description |
---|
ConstCatalan | G
| Catalan's constant |
Source code for this entry:
Entry(ID("a766f2"),
Formula(Equal(ConstCatalan, Hypergeometric3F2(Div(1, 2), Div(1, 2), 1, Div(3, 2), Div(3, 2), -1))))
G=n=0∑∞(2n+1)2(−1)n
TeX:
G = \sum_{n=0}^{\infty} \frac{{\left(-1\right)}^{n}}{{\left(2 n + 1\right)}^{2}}
Definitions:
Fungrim symbol | Notation | Short description |
---|
ConstCatalan | G
| Catalan's constant |
Sum | ∑nf(n)
| Sum |
Pow | ab
| Power |
Infinity | ∞
| Positive infinity |
Source code for this entry:
Entry(ID("33aa62"),
Formula(Equal(ConstCatalan, Sum(Div(Pow(-1, n), Pow(Add(Mul(2, n), 1), 2)), For(n, 0, Infinity)))))
G=21n=0∑∞(2n+1)2⋅(n2n)4n
TeX:
G = \frac{1}{2} \sum_{n=0}^{\infty} \frac{{4}^{n}}{{\left(2 n + 1\right)}^{2} \cdot {2 n \choose n}}
Definitions:
Fungrim symbol | Notation | Short description |
---|
ConstCatalan | G
| Catalan's constant |
Sum | ∑nf(n)
| Sum |
Pow | ab
| Power |
Binomial | (kn)
| Binomial coefficient |
Infinity | ∞
| Positive infinity |
Source code for this entry:
Entry(ID("d43f30"),
Formula(Equal(ConstCatalan, Mul(Div(1, 2), Sum(Div(Pow(4, n), Mul(Pow(Add(Mul(2, n), 1), 2), Binomial(Mul(2, n), n))), For(n, 0, Infinity))))))
G=8πlog(2+3)+83n=0∑∞(2n+1)2⋅(n2n)1
TeX:
G = \frac{\pi}{8} \log\!\left(2 + \sqrt{3}\right) + \frac{3}{8} \sum_{n=0}^{\infty} \frac{1}{{\left(2 n + 1\right)}^{2} \cdot {2 n \choose n}}
Definitions:
Fungrim symbol | Notation | Short description |
---|
ConstCatalan | G
| Catalan's constant |
Pi | π
| The constant pi (3.14...) |
Log | log(z)
| Natural logarithm |
Sqrt | z
| Principal square root |
Sum | ∑nf(n)
| Sum |
Pow | ab
| Power |
Binomial | (kn)
| Binomial coefficient |
Infinity | ∞
| Positive infinity |
Source code for this entry:
Entry(ID("0bd544"),
Formula(Equal(ConstCatalan, Add(Mul(Div(Pi, 8), Log(Add(2, Sqrt(3)))), Mul(Div(3, 8), Sum(Div(1, Mul(Pow(Add(Mul(2, n), 1), 2), Binomial(Mul(2, n), n))), For(n, 0, Infinity)))))))
G=641n=1∑∞n3(2n−1)(3n6n)(4n6n)(2n4n)256n(580n2−184n+15)
References:
- https://hal.inria.fr/hal-00990465/
TeX:
G = \frac{1}{64} \sum_{n=1}^{\infty} \frac{{256}^{n} \left(580 {n}^{2} - 184 n + 15\right)}{{n}^{3} \left(2 n - 1\right) {6 n \choose 3 n} {6 n \choose 4 n} {4 n \choose 2 n}}
Definitions:
Fungrim symbol | Notation | Short description |
---|
ConstCatalan | G
| Catalan's constant |
Sum | ∑nf(n)
| Sum |
Pow | ab
| Power |
Binomial | (kn)
| Binomial coefficient |
Infinity | ∞
| Positive infinity |
Source code for this entry:
Entry(ID("37fb5f"),
Formula(Equal(ConstCatalan, Mul(Div(1, 64), Sum(Div(Mul(Pow(256, n), Add(Sub(Mul(580, Pow(n, 2)), Mul(184, n)), 15)), Mul(Mul(Mul(Mul(Pow(n, 3), Sub(Mul(2, n), 1)), Binomial(Mul(6, n), Mul(3, n))), Binomial(Mul(6, n), Mul(4, n))), Binomial(Mul(4, n), Mul(2, n)))), For(n, 1, Infinity))))),
References("https://hal.inria.fr/hal-00990465/"))
G=1−n=1∑∞16nnζ(2n+1)
TeX:
G = 1 - \sum_{n=1}^{\infty} \frac{n \zeta\!\left(2 n + 1\right)}{{16}^{n}}
Definitions:
Fungrim symbol | Notation | Short description |
---|
ConstCatalan | G
| Catalan's constant |
Sum | ∑nf(n)
| Sum |
RiemannZeta | ζ(s)
| Riemann zeta function |
Pow | ab
| Power |
Infinity | ∞
| Positive infinity |
Source code for this entry:
Entry(ID("a8657e"),
Formula(Equal(ConstCatalan, Sub(1, Sum(Div(Mul(n, RiemannZeta(Add(Mul(2, n), 1))), Pow(16, n)), For(n, 1, Infinity))))))
G=∫01xatan(x)dx
TeX:
G = \int_{0}^{1} \frac{\operatorname{atan}(x)}{x} \, dx
Definitions:
Fungrim symbol | Notation | Short description |
---|
ConstCatalan | G
| Catalan's constant |
Integral | ∫abf(x)dx
| Integral |
Atan | atan(z)
| Inverse tangent |
Source code for this entry:
Entry(ID("ba58e0"),
Formula(Equal(ConstCatalan, Integral(Div(Atan(x), x), For(x, 0, 1)))))
G=−∫01x2+1log(x)dx
TeX:
G = -\int_{0}^{1} \frac{\log(x)}{{x}^{2} + 1} \, dx
Definitions:
Fungrim symbol | Notation | Short description |
---|
ConstCatalan | G
| Catalan's constant |
Integral | ∫abf(x)dx
| Integral |
Log | log(z)
| Natural logarithm |
Pow | ab
| Power |
Source code for this entry:
Entry(ID("d864b2"),
Formula(Equal(ConstCatalan, Neg(Integral(Div(Log(x), Add(Pow(x, 2), 1)), For(x, 0, 1))))))
G=∫1∞x2+1log(x)dx
TeX:
G = \int_{1}^{\infty} \frac{\log(x)}{{x}^{2} + 1} \, dx
Definitions:
Fungrim symbol | Notation | Short description |
---|
ConstCatalan | G
| Catalan's constant |
Integral | ∫abf(x)dx
| Integral |
Log | log(z)
| Natural logarithm |
Pow | ab
| Power |
Infinity | ∞
| Positive infinity |
Source code for this entry:
Entry(ID("49df16"),
Formula(Equal(ConstCatalan, Integral(Div(Log(x), Add(Pow(x, 2), 1)), For(x, 1, Infinity)))))
G=16π2+4πlog(2)−∫01(atan(x))2dx
TeX:
G = \frac{{\pi}^{2}}{16} + \frac{\pi \log(2)}{4} - \int_{0}^{1} {\left(\operatorname{atan}(x)\right)}^{2} \, dx
Definitions:
Fungrim symbol | Notation | Short description |
---|
ConstCatalan | G
| Catalan's constant |
Pow | ab
| Power |
Pi | π
| The constant pi (3.14...) |
Log | log(z)
| Natural logarithm |
Integral | ∫abf(x)dx
| Integral |
Atan | atan(z)
| Inverse tangent |
Source code for this entry:
Entry(ID("997777"),
Formula(Equal(ConstCatalan, Sub(Add(Div(Pow(Pi, 2), 16), Div(Mul(Pi, Log(2)), 4)), Integral(Pow(Atan(x), 2), For(x, 0, 1))))))
G=4π7ζ(3)+π2∫01x(atan(x))2dx
TeX:
G = \frac{7 \zeta\!\left(3\right)}{4 \pi} + \frac{2}{\pi} \int_{0}^{1} \frac{{\left(\operatorname{atan}(x)\right)}^{2}}{x} \, dx
Definitions:
Fungrim symbol | Notation | Short description |
---|
ConstCatalan | G
| Catalan's constant |
RiemannZeta | ζ(s)
| Riemann zeta function |
Pi | π
| The constant pi (3.14...) |
Integral | ∫abf(x)dx
| Integral |
Pow | ab
| Power |
Atan | atan(z)
| Inverse tangent |
Source code for this entry:
Entry(ID("d6703a"),
Formula(Equal(ConstCatalan, Add(Div(Mul(7, RiemannZeta(3)), Mul(4, Pi)), Mul(Div(2, Pi), Integral(Div(Pow(Atan(x), 2), x), For(x, 0, 1)))))))
G=∫01x2+1acos(x)dx
TeX:
G = \int_{0}^{1} \frac{\operatorname{acos}(x)}{\sqrt{{x}^{2} + 1}} \, dx
Definitions:
Fungrim symbol | Notation | Short description |
---|
ConstCatalan | G
| Catalan's constant |
Integral | ∫abf(x)dx
| Integral |
Sqrt | z
| Principal square root |
Pow | ab
| Power |
Source code for this entry:
Entry(ID("fd82ab"),
Formula(Equal(ConstCatalan, Integral(Div(Acos(x), Sqrt(Add(Pow(x, 2), 1))), For(x, 0, 1)))))
G=∫011−x2asinh(x)dx
TeX:
G = \int_{0}^{1} \frac{\operatorname{asinh}(x)}{\sqrt{1 - {x}^{2}}} \, dx
Definitions:
Fungrim symbol | Notation | Short description |
---|
ConstCatalan | G
| Catalan's constant |
Integral | ∫abf(x)dx
| Integral |
Sqrt | z
| Principal square root |
Pow | ab
| Power |
Source code for this entry:
Entry(ID("38c2d5"),
Formula(Equal(ConstCatalan, Integral(Div(Asinh(x), Sqrt(Sub(1, Pow(x, 2)))), For(x, 0, 1)))))
G=21∫0∞cosh(x)xdx
TeX:
G = \frac{1}{2} \int_{0}^{\infty} \frac{x}{\cosh(x)} \, dx
Definitions:
Fungrim symbol | Notation | Short description |
---|
ConstCatalan | G
| Catalan's constant |
Integral | ∫abf(x)dx
| Integral |
Infinity | ∞
| Positive infinity |
Source code for this entry:
Entry(ID("c54c85"),
Formula(Equal(ConstCatalan, Mul(Div(1, 2), Integral(Div(x, Cosh(x)), For(x, 0, Infinity))))))
G=41∫−π/2π/2sin(x)xdx
TeX:
G = \frac{1}{4} \int_{-\pi / 2}^{\pi / 2} \frac{x}{\sin(x)} \, dx
Definitions:
Fungrim symbol | Notation | Short description |
---|
ConstCatalan | G
| Catalan's constant |
Integral | ∫abf(x)dx
| Integral |
Sin | sin(z)
| Sine |
Pi | π
| The constant pi (3.14...) |
Source code for this entry:
Entry(ID("ec1435"),
Formula(Equal(ConstCatalan, Mul(Div(1, 4), Integral(Div(x, Sin(x)), For(x, Neg(Div(Pi, 2)), Div(Pi, 2)))))))
G=∫0π/4sin(x)cos(x)xdx
TeX:
G = \int_{0}^{\pi / 4} \frac{x}{\sin(x) \cos(x)} \, dx
Definitions:
Fungrim symbol | Notation | Short description |
---|
ConstCatalan | G
| Catalan's constant |
Integral | ∫abf(x)dx
| Integral |
Sin | sin(z)
| Sine |
Cos | cos(z)
| Cosine |
Pi | π
| The constant pi (3.14...) |
Source code for this entry:
Entry(ID("79f20e"),
Formula(Equal(ConstCatalan, Integral(Div(x, Mul(Sin(x), Cos(x))), For(x, 0, Div(Pi, 4))))))
G=∫0∞atan(e−x)dx
TeX:
G = \int_{0}^{\infty} \operatorname{atan}\!\left({e}^{-x}\right) \, dx
Definitions:
Fungrim symbol | Notation | Short description |
---|
ConstCatalan | G
| Catalan's constant |
Integral | ∫abf(x)dx
| Integral |
Atan | atan(z)
| Inverse tangent |
Exp | ez
| Exponential function |
Infinity | ∞
| Positive infinity |
Source code for this entry:
Entry(ID("fc5ea9"),
Formula(Equal(ConstCatalan, Integral(Atan(Exp(Neg(x))), For(x, 0, Infinity)))))
G=−∫0π/4log(tan(x))dx
TeX:
G = -\int_{0}^{\pi / 4} \log\!\left(\tan(x)\right) \, dx
Definitions:
Fungrim symbol | Notation | Short description |
---|
ConstCatalan | G
| Catalan's constant |
Integral | ∫abf(x)dx
| Integral |
Log | log(z)
| Natural logarithm |
Pi | π
| The constant pi (3.14...) |
Source code for this entry:
Entry(ID("08cda4"),
Formula(Equal(ConstCatalan, Neg(Integral(Log(Tan(x)), For(x, 0, Div(Pi, 4)))))))
G=∫0π/4log(cot(x))dx
TeX:
G = \int_{0}^{\pi / 4} \log\!\left(\cot(x)\right) \, dx
Definitions:
Fungrim symbol | Notation | Short description |
---|
ConstCatalan | G
| Catalan's constant |
Integral | ∫abf(x)dx
| Integral |
Log | log(z)
| Natural logarithm |
Pi | π
| The constant pi (3.14...) |
Source code for this entry:
Entry(ID("270e67"),
Formula(Equal(ConstCatalan, Integral(Log(Cot(x)), For(x, 0, Div(Pi, 4))))))
G=∫0π/2asinh(sin(x))dx
TeX:
G = \int_{0}^{\pi / 2} \operatorname{asinh}\!\left(\sin(x)\right) \, dx
Definitions:
Fungrim symbol | Notation | Short description |
---|
ConstCatalan | G
| Catalan's constant |
Integral | ∫abf(x)dx
| Integral |
Sin | sin(z)
| Sine |
Pi | π
| The constant pi (3.14...) |
Source code for this entry:
Entry(ID("4dec89"),
Formula(Equal(ConstCatalan, Integral(Asinh(Sin(x)), For(x, 0, Div(Pi, 2))))))
G=∫0π/2asinh(cos(x))dx
TeX:
G = \int_{0}^{\pi / 2} \operatorname{asinh}\!\left(\cos(x)\right) \, dx
Definitions:
Fungrim symbol | Notation | Short description |
---|
ConstCatalan | G
| Catalan's constant |
Integral | ∫abf(x)dx
| Integral |
Cos | cos(z)
| Cosine |
Pi | π
| The constant pi (3.14...) |
Source code for this entry:
Entry(ID("d6415e"),
Formula(Equal(ConstCatalan, Integral(Asinh(Cos(x)), For(x, 0, Div(Pi, 2))))))
G=−2∫0π/4log(2sin(x))dx
TeX:
G = -2 \int_{0}^{\pi / 4} \log\!\left(2 \sin(x)\right) \, dx
Definitions:
Fungrim symbol | Notation | Short description |
---|
ConstCatalan | G
| Catalan's constant |
Integral | ∫abf(x)dx
| Integral |
Log | log(z)
| Natural logarithm |
Sin | sin(z)
| Sine |
Pi | π
| The constant pi (3.14...) |
Source code for this entry:
Entry(ID("e09b77"),
Formula(Equal(ConstCatalan, Neg(Mul(2, Integral(Log(Mul(2, Sin(x))), For(x, 0, Div(Pi, 4))))))))
G=2∫0π/4log(2cos(x))dx
TeX:
G = 2 \int_{0}^{\pi / 4} \log\!\left(2 \cos(x)\right) \, dx
Definitions:
Fungrim symbol | Notation | Short description |
---|
ConstCatalan | G
| Catalan's constant |
Integral | ∫abf(x)dx
| Integral |
Log | log(z)
| Natural logarithm |
Cos | cos(z)
| Cosine |
Pi | π
| The constant pi (3.14...) |
Source code for this entry:
Entry(ID("6d3591"),
Formula(Equal(ConstCatalan, Mul(2, Integral(Log(Mul(2, Cos(x))), For(x, 0, Div(Pi, 4)))))))
G=21∫01K(m2)dm
TeX:
G = \frac{1}{2} \int_{0}^{1} K\!\left({m}^{2}\right) \, dm
Definitions:
Fungrim symbol | Notation | Short description |
---|
ConstCatalan | G
| Catalan's constant |
Integral | ∫abf(x)dx
| Integral |
EllipticK | K(m)
| Legendre complete elliptic integral of the first kind |
Pow | ab
| Power |
Source code for this entry:
Entry(ID("1f1fb4"),
Formula(Equal(ConstCatalan, Mul(Div(1, 2), Integral(EllipticK(Pow(m, 2)), For(m, 0, 1))))))
G=∫01E(m2)dm−21
TeX:
G = \int_{0}^{1} E\!\left({m}^{2}\right) \, dm - \frac{1}{2}
Definitions:
Fungrim symbol | Notation | Short description |
---|
ConstCatalan | G
| Catalan's constant |
Integral | ∫abf(x)dx
| Integral |
EllipticE | E(m)
| Legendre complete elliptic integral of the second kind |
Pow | ab
| Power |
Source code for this entry:
Entry(ID("d3cfc2"),
Formula(Equal(ConstCatalan, Sub(Integral(EllipticE(Pow(m, 2)), For(m, 0, 1)), Div(1, 2)))))
G=2π∫01/2Γ(1+x)Γ(1−x)dx
TeX:
G = \frac{\pi}{2} \int_{0}^{1 / 2} \Gamma\!\left(1 + x\right) \Gamma\!\left(1 - x\right) \, dx
Definitions:
Fungrim symbol | Notation | Short description |
---|
ConstCatalan | G
| Catalan's constant |
Pi | π
| The constant pi (3.14...) |
Integral | ∫abf(x)dx
| Integral |
Gamma | Γ(z)
| Gamma function |
Source code for this entry:
Entry(ID("937fa9"),
Formula(Equal(ConstCatalan, Mul(Div(Pi, 2), Integral(Mul(Gamma(Add(1, x)), Gamma(Sub(1, x))), For(x, 0, Div(1, 2)))))))
G=∫01∫011+x2y21dxdy
TeX:
G = \int_{0}^{1} \int_{0}^{1} \frac{1}{1 + {x}^{2} {y}^{2}} \, dx \, dy
Definitions:
Fungrim symbol | Notation | Short description |
---|
ConstCatalan | G
| Catalan's constant |
Integral | ∫abf(x)dx
| Integral |
Pow | ab
| Power |
Source code for this entry:
Entry(ID("5b31ee"),
Formula(Equal(ConstCatalan, Integral(Integral(Div(1, Add(1, Mul(Pow(x, 2), Pow(y, 2)))), For(x, 0, 1)), For(y, 0, 1)))))
G=41∫01∫01(x+y)1−x1−y1dxdy
TeX:
G = \frac{1}{4} \int_{0}^{1} \int_{0}^{1} \frac{1}{\left(x + y\right) \sqrt{1 - x} \sqrt{1 - y}} \, dx \, dy
Definitions:
Fungrim symbol | Notation | Short description |
---|
ConstCatalan | G
| Catalan's constant |
Integral | ∫abf(x)dx
| Integral |
Sqrt | z
| Principal square root |
Source code for this entry:
Entry(ID("ed4cca"),
Formula(Equal(ConstCatalan, Mul(Div(1, 4), Integral(Integral(Div(1, Mul(Mul(Add(x, y), Sqrt(Sub(1, x))), Sqrt(Sub(1, y)))), For(x, 0, 1)), For(y, 0, 1))))))