Assumptions:z∈Candw∈τandτ∈H
TeX:
\theta_{1}\!\left(z + w , \tau\right) \theta_{1}\!\left(z - w , \tau\right) \theta_{2}^{2}\!\left(0, \tau\right) = \theta_{1}^{2}\!\left(z, \tau\right) \theta_{2}^{2}\!\left(w, \tau\right) - \theta_{2}^{2}\!\left(z, \tau\right) \theta_{1}^{2}\!\left(w, \tau\right) = \theta_{4}^{2}\!\left(z, \tau\right) \theta_{3}^{2}\!\left(w, \tau\right) - \theta_{3}^{2}\!\left(z, \tau\right) \theta_{4}^{2}\!\left(w, \tau\right)
z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; w \in \tau \;\mathbin{\operatorname{and}}\; \tau \in \mathbb{H}
Definitions:
Fungrim symbol | Notation | Short description |
---|
JacobiTheta | θj(z,τ)
| Jacobi theta function |
Pow | ab
| Power |
CC | C
| Complex numbers |
HH | H
| Upper complex half-plane |
Source code for this entry:
Entry(ID("45165c"),
Formula(Equal(Mul(Mul(JacobiTheta(1, Add(z, w), tau), JacobiTheta(1, Sub(z, w), tau)), Pow(JacobiTheta(2, 0, tau), 2)), Sub(Mul(Pow(JacobiTheta(1, z, tau), 2), Pow(JacobiTheta(2, w, tau), 2)), Mul(Pow(JacobiTheta(2, z, tau), 2), Pow(JacobiTheta(1, w, tau), 2))), Sub(Mul(Pow(JacobiTheta(4, z, tau), 2), Pow(JacobiTheta(3, w, tau), 2)), Mul(Pow(JacobiTheta(3, z, tau), 2), Pow(JacobiTheta(4, w, tau), 2))))),
Variables(z, w, tau),
Assumptions(And(Element(z, CC), Element(w, tau), Element(tau, HH))))