Fungrim home page

Airy functions

Table of contents: Definitions - Illustrations - Differential equation - Special values - Higher derivatives - Hypergeometric representations - Analytic properties

Definitions

9ac289
Symbol: AiryAi Ai ⁣(z)\operatorname{Ai}\!\left(z\right) Airy function of the first kind
5a9d3f
Symbol: AiryBi Bi ⁣(z)\operatorname{Bi}\!\left(z\right) Airy function of the second kind

Illustrations

b4c968
Image: X-ray of Ai ⁣(z)\operatorname{Ai}\!\left(z\right) on z[6,6]+[6,6]iz \in \left[-6, 6\right] + \left[-6, 6\right] i
fa65f3
Image: X-ray of Bi ⁣(z)\operatorname{Bi}\!\left(z\right) on z[6,6]+[6,6]iz \in \left[-6, 6\right] + \left[-6, 6\right] i

Differential equation

51b241
y(z)zy(z)=0   where y(z)=CAi ⁣(z)+DBi ⁣(z)y''(z) - z y(z) = 0\; \text{ where } y(z) = C \operatorname{Ai}\!\left(z\right) + D \operatorname{Bi}\!\left(z\right)
de9800
Ai ⁣(z)Bi ⁣(z)Ai ⁣(z)Bi ⁣(z)=1π\operatorname{Ai}\!\left(z\right) \operatorname{Bi}'\!\left(z\right) - \operatorname{Ai}'\!\left(z\right) \operatorname{Bi}\!\left(z\right) = \frac{1}{\pi}

Special values

693cfe
Ai ⁣(0)=132/3Γ ⁣(23)[0.355028053887817239260063186004±1.841031]\operatorname{Ai}\!\left(0\right) = \frac{1}{{3}^{2 / 3} \Gamma\!\left(\frac{2}{3}\right)} \in \left[0.355028053887817239260063186004 \pm 1.84 \cdot 10^{-31}\right]
807917
Ai ⁣(0)=131/3Γ ⁣(13)[0.258819403792806798405183560189±2.041031]\operatorname{Ai}'\!\left(0\right) = -\frac{1}{{3}^{1 / 3} \Gamma\!\left(\frac{1}{3}\right)} \in \left[-0.258819403792806798405183560189 \pm 2.04 \cdot 10^{-31}\right]
9a8d4d
Bi ⁣(0)=131/6Γ ⁣(23)[0.614926627446000735150922369094±3.871031]\operatorname{Bi}\!\left(0\right) = \frac{1}{{3}^{1 / 6} \Gamma\!\left(\frac{2}{3}\right)} \in \left[0.614926627446000735150922369094 \pm 3.87 \cdot 10^{-31}\right]
fba07c
Bi ⁣(0)=31/6Γ ⁣(13)[0.448288357353826357914823710399±1.721031]\operatorname{Bi}'\!\left(0\right) = \frac{{3}^{1 / 6}}{\Gamma\!\left(\frac{1}{3}\right)} \in \left[0.448288357353826357914823710399 \pm 1.72 \cdot 10^{-31}\right]

Higher derivatives

b2e9d0
Ai ⁣(z)=zAi ⁣(z)\operatorname{Ai}''\!\left(z\right) = z \operatorname{Ai}\!\left(z\right)
70ec9f
Bi ⁣(z)=zBi ⁣(z)\operatorname{Bi}''\!\left(z\right) = z \operatorname{Bi}\!\left(z\right)
eadca2
y(n)(z)=zy(n2)(z)+(n2)y(n3)(z)   where y(z)=CAi ⁣(z)+DBi ⁣(z){y}^{(n)}(z) = z {y}^{(n - 2)}(z) + \left(n - 2\right) {y}^{(n - 3)}(z)\; \text{ where } y(z) = C \operatorname{Ai}\!\left(z\right) + D \operatorname{Bi}\!\left(z\right)

Hypergeometric representations

01bbb6
Ai ⁣(z)=Ai ⁣(0)0F1 ⁣(23,z39)+zAi ⁣(0)0F1 ⁣(43,z39)\operatorname{Ai}\!\left(z\right) = \operatorname{Ai}\!\left(0\right) \,{}_0F_1\!\left(\frac{2}{3}, \frac{{z}^{3}}{9}\right) + z \operatorname{Ai}'\!\left(0\right) \,{}_0F_1\!\left(\frac{4}{3}, \frac{{z}^{3}}{9}\right)
bd319e
Bi ⁣(z)=Bi ⁣(0)0F1 ⁣(23,z39)+zBi ⁣(0)0F1 ⁣(43,z39)\operatorname{Bi}\!\left(z\right) = \operatorname{Bi}\!\left(0\right) \,{}_0F_1\!\left(\frac{2}{3}, \frac{{z}^{3}}{9}\right) + z \operatorname{Bi}'\!\left(0\right) \,{}_0F_1\!\left(\frac{4}{3}, \frac{{z}^{3}}{9}\right)
20e530
Ai ⁣(z)=Ai ⁣(0)0F1 ⁣(13,z39)+z22Ai ⁣(0)0F1 ⁣(53,z39)\operatorname{Ai}'\!\left(z\right) = \operatorname{Ai}'\!\left(0\right) \,{}_0F_1\!\left(\frac{1}{3}, \frac{{z}^{3}}{9}\right) + \frac{{z}^{2}}{2} \operatorname{Ai}\!\left(0\right) \,{}_0F_1\!\left(\frac{5}{3}, \frac{{z}^{3}}{9}\right)
4d65e5
Bi ⁣(z)=Bi ⁣(0)0F1 ⁣(13,z39)+z22Bi ⁣(0)0F1 ⁣(53,z39)\operatorname{Bi}'\!\left(z\right) = \operatorname{Bi}'\!\left(0\right) \,{}_0F_1\!\left(\frac{1}{3}, \frac{{z}^{3}}{9}\right) + \frac{{z}^{2}}{2} \operatorname{Bi}\!\left(0\right) \,{}_0F_1\!\left(\frac{5}{3}, \frac{{z}^{3}}{9}\right)

Analytic properties

def37e
CAi ⁣(z)+DBi ⁣(z) is holomorphic on zCC \operatorname{Ai}\!\left(z\right) + D \operatorname{Bi}\!\left(z\right) \text{ is holomorphic on } z \in \mathbb{C}
1f0577
poleszC{~}[CAi ⁣(z)+DBi ⁣(z)]={}\mathop{\operatorname{poles}\,}\limits_{z \in \mathbb{C} \cup \left\{{\tilde \infty}\right\}} \left[C \operatorname{Ai}\!\left(z\right) + D \operatorname{Bi}\!\left(z\right)\right] = \left\{\right\}
90f31e
EssentialSingularities ⁣(CAi ⁣(z)+DBi ⁣(z),z,C{~})={~}\operatorname{EssentialSingularities}\!\left(C \operatorname{Ai}\!\left(z\right) + D \operatorname{Bi}\!\left(z\right), z, \mathbb{C} \cup \left\{{\tilde \infty}\right\}\right) = \left\{{\tilde \infty}\right\}
b88f65
BranchPoints ⁣(CAi ⁣(z)+DBi ⁣(z),z,C{~})={}\operatorname{BranchPoints}\!\left(C \operatorname{Ai}\!\left(z\right) + D \operatorname{Bi}\!\left(z\right), z, \mathbb{C} \cup \left\{{\tilde \infty}\right\}\right) = \left\{\right\}
7194d4
BranchCuts ⁣(CAi ⁣(z)+DBi ⁣(z),z,C)={}\operatorname{BranchCuts}\!\left(C \operatorname{Ai}\!\left(z\right) + D \operatorname{Bi}\!\left(z\right), z, \mathbb{C}\right) = \left\{\right\}
d1f9d0
zeroszCAi ⁣(z)R\mathop{\operatorname{zeros}\,}\limits_{z \in \mathbb{C}} \operatorname{Ai}\!\left(z\right) \subset \mathbb{R}
a2df77
zeroszCAi ⁣(z)R\mathop{\operatorname{zeros}\,}\limits_{z \in \mathbb{C}} \operatorname{Ai}'\!\left(z\right) \subset \mathbb{R}

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC