Fungrim home page

Gamma function

Table of contents: Definitions - Illustrations - Particular values - Functional equations - Integral representations - Series expansions - Analytic properties - Complex parts - Bounds and inequalities - Representation of other functions

Definitions

09e2ed
Symbol: Gamma Γ(z)\Gamma(z) Gamma function
c6038c
Symbol: LogGamma logΓ(z)\log \Gamma(z) Logarithmic gamma function

Illustrations

7ddf69
Image: Plot of Γ(x)\Gamma(x) on x[4,4]x \in \left[-4, 4\right]
aa967b
Image: Plot of logΓ(x)\log \Gamma(x) on x[4,4]x \in \left[-4, 4\right]
b0f293
Image: X-ray of Γ(z)\Gamma(z) on z[5,5]+[5,5]iz \in \left[-5, 5\right] + \left[-5, 5\right] i
c7d4c2
Image: X-ray of logΓ(z)\log \Gamma(z) on z[5,5]+[5,5]iz \in \left[-5, 5\right] + \left[-5, 5\right] i

Particular values

f1d31a
Γ(n)=(n1)!\Gamma(n) = \left(n - 1\right)!
e68d11
Γ(1)=1\Gamma(1) = 1
19d480
Γ(2)=1\Gamma(2) = 1
f826a6
Γ ⁣(12)=π\Gamma\!\left(\frac{1}{2}\right) = \sqrt{\pi}
48ac55
Γ ⁣(32)=π2\Gamma\!\left(\frac{3}{2}\right) = \frac{\sqrt{\pi}}{2}

Functional equations

78f1f4
Γ ⁣(z+1)=zΓ(z)\Gamma\!\left(z + 1\right) = z \Gamma(z)
639d91
Γ(z)=(z1)Γ ⁣(z1)\Gamma(z) = \left(z - 1\right) \Gamma\!\left(z - 1\right)
14af98
Γ ⁣(z1)=Γ(z)z1\Gamma\!\left(z - 1\right) = \frac{\Gamma(z)}{z - 1}
56d710
Γ ⁣(z+n)=(z)nΓ(z)\Gamma\!\left(z + n\right) = \left(z\right)_{n} \Gamma(z)
b510b6
Γ(z)=πsin ⁣(πz)1Γ ⁣(1z)\Gamma(z) = \frac{\pi}{\sin\!\left(\pi z\right)} \frac{1}{\Gamma\!\left(1 - z\right)}
a787eb
Γ(z)Γ ⁣(z+12)=212zπΓ ⁣(2z)\Gamma(z) \Gamma\!\left(z + \frac{1}{2}\right) = {2}^{1 - 2 z} \sqrt{\pi} \Gamma\!\left(2 z\right)
90a1e1
k=0m1Γ ⁣(z+km)=(2π)(m1)/2m1/2mzΓ ⁣(mz)\prod_{k=0}^{m - 1} \Gamma\!\left(z + \frac{k}{m}\right) = {\left(2 \pi\right)}^{\left( m - 1 \right) / 2} {m}^{1 / 2 - m z} \Gamma\!\left(m z\right)
a26ac7
Γ(z)=exp ⁣(logΓ(z))\Gamma(z) = \exp\!\left(\log \Gamma(z)\right)
774d37
logΓ ⁣(z+1)=logΓ(z)+log(z)\log \Gamma\!\left(z + 1\right) = \log \Gamma(z) + \log(z)

Integral representations

4e4e0f
Γ(z)=0tz1etdt\Gamma(z) = \int_{0}^{\infty} {t}^{z - 1} {e}^{-t} \, dt

Series expansions

661054
logΓ ⁣(1+z)=γz+k=2ζ(k)k(z)k\log \Gamma\!\left(1 + z\right) = -\gamma z + \sum_{k=2}^{\infty} \frac{\zeta(k)}{k} {\left(-z\right)}^{k}
37a95a
logΓ(z)=(z12)log(z)z+log ⁣(2π)2+k=1n1B2k2k(2k1)z2k1+Rn ⁣(z)\log \Gamma(z) = \left(z - \frac{1}{2}\right) \log(z) - z + \frac{\log\!\left(2 \pi\right)}{2} + \sum_{k=1}^{n - 1} \frac{B_{2 k}}{2 k \left(2 k - 1\right) {z}^{2 k - 1}} + R_{n}\!\left(z\right)
8cf1fd
Symbol: StirlingSeriesRemainder Rn ⁣(z)R_{n}\!\left(z\right) Remainder term in the Stirling series for the logarithmic gamma function
53a2a1
Rn ⁣(z)=0B2nB2n ⁣(tt)2n(z+t)2ndtR_{n}\!\left(z\right) = \int_{0}^{\infty} \frac{B_{2 n} - B_{2 n}\!\left(t - \left\lfloor t \right\rfloor\right)}{2 n {\left(z + t\right)}^{2 n}} \, dt
6d0a95
Γ(z)=(2π)1/2zz1/2ezexp ⁣(n=1(z+n12)log ⁣(z+nz+n1)1)\Gamma(z) = {\left(2 \pi\right)}^{1 / 2} {z}^{z - 1 / 2} {e}^{-z} \exp\!\left(\sum_{n=1}^{\infty} \left(z + n - \frac{1}{2}\right) \log\!\left(\frac{z + n}{z + n - 1}\right) - 1\right)

Analytic properties

798c5d
Γ(z) is holomorphic on zC{0,1,}\Gamma(z) \text{ is holomorphic on } z \in \mathbb{C} \setminus \{0, -1, \ldots\}
2870f0
poleszC{~}Γ(z)={0,1,}\mathop{\operatorname{poles}\,}\limits_{z \in \mathbb{C} \cup \left\{{\tilde \infty}\right\}} \Gamma(z) = \{0, -1, \ldots\}
34d6ae
EssentialSingularities ⁣(Γ(z),z,C{~})={~}\operatorname{EssentialSingularities}\!\left(\Gamma(z), z, \mathbb{C} \cup \left\{{\tilde \infty}\right\}\right) = \left\{{\tilde \infty}\right\}
d086bd
BranchPoints ⁣(Γ(z),z,C{~})={}\operatorname{BranchPoints}\!\left(\Gamma(z), z, \mathbb{C} \cup \left\{{\tilde \infty}\right\}\right) = \left\{\right\}
9a44c5
BranchCuts ⁣(Γ(z),z,C)={}\operatorname{BranchCuts}\!\left(\Gamma(z), z, \mathbb{C}\right) = \left\{\right\}
a76328
zeroszCΓ(z)={}\mathop{\operatorname{zeros}\,}\limits_{z \in \mathbb{C}} \Gamma(z) = \left\{\right\}

Complex parts

d7d2a0
Γ ⁣(z)=Γ(z)\Gamma\!\left(\overline{z}\right) = \overline{\Gamma(z)}

Bounds and inequalities

Related topics: Bounds and inequalities for the gamma function

a0ca3e
Γ(x)<(2π)1/2xx1/2exexp ⁣(112x)\Gamma(x) < {\left(2 \pi\right)}^{1 / 2} {x}^{x - 1 / 2} {e}^{-x} \exp\!\left(\frac{1}{12 x}\right)
b7fec0
Γ(z)(2π)1/2zx1/2eπy/2exp ⁣(16z)   where z=x+yi\left|\Gamma(z)\right| \le {\left(2 \pi\right)}^{1 / 2} {\left|z\right|}^{x - 1 / 2} {e}^{-\pi \left|y\right| / 2} \exp\!\left(\frac{1}{6 \left|z\right|}\right)\; \text{ where } z = x + y i

Representation of other functions

Factorials and binomial coefficients

62c6c9
n!=Γ ⁣(n+1)n ! = \Gamma\!\left(n + 1\right)
e87c43
(zk)=Γ ⁣(z+1)Γ ⁣(k+1)Γ ⁣(zk+1){z \choose k} = \frac{\Gamma\!\left(z + 1\right)}{\Gamma\!\left(k + 1\right) \Gamma\!\left(z - k + 1\right)}
c733f7
(z)k=Γ ⁣(z+k)Γ(z)\left(z\right)_{k} = \frac{\Gamma\!\left(z + k\right)}{\Gamma(z)}

Beta function

888581
B ⁣(a,b)=Γ(a)Γ(b)Γ ⁣(a+b)\mathrm{B}\!\left(a, b\right) = \frac{\Gamma(a) \Gamma(b)}{\Gamma\!\left(a + b\right)}

Elementary functions

d38a03
sin ⁣(πz)=πΓ(z)Γ ⁣(1z)\sin\!\left(\pi z\right) = \frac{\pi}{\Gamma(z) \Gamma\!\left(1 - z\right)}
b7a578
cos ⁣(πz)=πΓ ⁣(12+z)Γ ⁣(12z)\cos\!\left(\pi z\right) = \frac{\pi}{\Gamma\!\left(\frac{1}{2} + z\right) \Gamma\!\left(\frac{1}{2} - z\right)}
ee56b9
tan ⁣(πz)=Γ ⁣(12+z)Γ ⁣(12z)Γ(z)Γ ⁣(1z)\tan\!\left(\pi z\right) = \frac{\Gamma\!\left(\frac{1}{2} + z\right) \Gamma\!\left(\frac{1}{2} - z\right)}{\Gamma(z) \Gamma\!\left(1 - z\right)}
d16cb4
sinc ⁣(πz)=1Γ ⁣(1+z)Γ ⁣(1z)\operatorname{sinc}\!\left(\pi z\right) = \frac{1}{\Gamma\!\left(1 + z\right) \Gamma\!\left(1 - z\right)}
6430cc
eπz=π(1Γ ⁣(12+iz)Γ ⁣(12iz)+zΓ ⁣(1+iz)Γ ⁣(1iz)){e}^{\pi z} = \pi \left(\frac{1}{\Gamma\!\left(\frac{1}{2} + i z\right) \Gamma\!\left(\frac{1}{2} - i z\right)} + \frac{z}{\Gamma\!\left(1 + i z\right) \Gamma\!\left(1 - i z\right)}\right)

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2019-11-11 15:50:15.016492 UTC