Fungrim home page

Fungrim entry: d16cb4

sinc ⁣(πz)=1Γ ⁣(1+z)Γ ⁣(1z)\operatorname{sinc}\!\left(\pi z\right) = \frac{1}{\Gamma\!\left(1 + z\right) \Gamma\!\left(1 - z\right)}
Assumptions:zCz \in \mathbb{C}
TeX:
\operatorname{sinc}\!\left(\pi z\right) = \frac{1}{\Gamma\!\left(1 + z\right) \Gamma\!\left(1 - z\right)}

z \in \mathbb{C}
Definitions:
Fungrim symbol Notation Short description
Sincsinc(z)\operatorname{sinc}(z) Sinc function
Piπ\pi The constant pi (3.14...)
GammaΓ(z)\Gamma(z) Gamma function
CCC\mathbb{C} Complex numbers
Source code for this entry:
Entry(ID("d16cb4"),
    Formula(Equal(Sinc(Mul(Pi, z)), Div(1, Mul(Gamma(Add(1, z)), Gamma(Sub(1, z)))))),
    Variables(z),
    Assumptions(Element(z, CC)))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2020-01-31 18:09:28.494564 UTC