Fungrim home page

Fungrim entry: 798c5d

Γ(z) is holomorphic on zC{0,1,}\Gamma(z) \text{ is holomorphic on } z \in \mathbb{C} \setminus \{0, -1, \ldots\}
TeX:
\Gamma(z) \text{ is holomorphic on } z \in \mathbb{C} \setminus \{0, -1, \ldots\}
Definitions:
Fungrim symbol Notation Short description
IsHolomorphicf(z) is holomorphic at z=cf(z) \text{ is holomorphic at } z = c Holomorphic predicate
GammaFunctionΓ(z)\Gamma(z) Gamma function
CCC\mathbb{C} Complex numbers
ZZLessEqualZn\mathbb{Z}_{\le n} Integers less than or equal to n
Source code for this entry:
Entry(ID("798c5d"),
    Formula(IsHolomorphic(GammaFunction(z), ForElement(z, SetMinus(CC, ZZLessEqual(0))))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2019-10-05 13:11:19.856591 UTC