Fungrim home page

All symbol definitions

Fungrim symbol Notation Short description
Entry\ldots Entry
ID\ldots Entry ID
Formula\ldots Formula
Variables\ldots Declaration of variables
Assumptions\ldots Assumptions (domain declaration) for the variables
References\ldots References
Description\ldots Text description
For\ldots General-purpose generator
ForElement\ldots Generator for all the elements of a set
Repeatx,,xn times\underbrace{x, \ldots, x}_{n \text{ times}} Repeating sequence
Stepf(a),f ⁣(a+1),,f(b)f(a), f\!\left(a + 1\right), \ldots, f(b) Enumerated sequence
Parentheses()\left(\ldots\right) Parentheses
Brackets[]\left[\ldots\right] Square brackets
Braces{}\left\{\ldots\right\} Curly braces
HurwitzZetaζ ⁣(s,a)\zeta\!\left(s, a\right) Hurwitz zeta function
Notnot(x) \operatorname{not} \left(x\right) Logical not
Andxandyx \,\mathbin{\operatorname{and}}\, y Logical and
Orxoryx \,\mathbin{\operatorname{or}}\, y Logical or
Equivalent(x)    (y)\left(x\right) \iff \left(y\right) Logical equivalence
Implies(x)    (y)\left(x\right) \implies \left(y\right) Logical implication
Set{}\left\{\ldots\right\} Set with given elements
Cardinality#S\# S Set cardinality
PowerSetP(S)\mathscr{P}(S) Power set
UnionSTS \cup T Set union
IntersectionSTS \cap T Set intersection
SetMinusSTS \setminus T Set difference
ElementxSx \in S Set membership
NotElementxSx \notin S Set non-membership
SubsetSTS \subset T Strict subset
SubsetEqualSTS \subseteq T Subset
ZZZ\mathbb{Z} Integers
QQQ\mathbb{Q} Rational numbers
RRR\mathbb{R} Real numbers
CCC\mathbb{C} Complex numbers
AlgebraicNumbersQ\overline{\mathbb{Q}} Algebraic numbers
Infinity\infty Positive infinity
UnsignedInfinity~{\tilde \infty} Unsigned infinity
ZZGreaterEqualZn\mathbb{Z}_{\ge n} Integers greater than or equal to n
ZZLessEqualZn\mathbb{Z}_{\le n} Integers less than or equal to n
Range{a,a+1,,b}\{a, a + 1, \ldots, b\} Integers between given endpoints
ClosedInterval[a,b]\left[a, b\right] Closed interval
OpenInterval(a,b)\left(a, b\right) Open interval
ClosedOpenInterval[a,b)\left[a, b\right) Closed-open interval
OpenClosedInterval(a,b]\left(a, b\right] Open-closed interval
Sumnf(n)\sum_{n} f(n) Sum
Productnf(n)\prod_{n} f(n) Product
PrimeSumpf(p)\sum_{p} f(p) Sum over primes
PrimeProductpf(p)\prod_{p} f(p) Product over primes
DivisorSumknf(k)\sum_{k \mid n} f(k) Sum over divisors
DivisorProductknf(k)\prod_{k \mid n} f(k) Product over divisors
ZeroszerosxSf(x)\mathop{\operatorname{zeros}\,}\limits_{x \in S} f(x) Zeros (roots) of function
UniqueZerozero*xSf(x)\mathop{\operatorname{zero*}\,}\limits_{x \in S} f(x) Unique zero (root) of function
SolutionssolutionsxSQ(x)\mathop{\operatorname{solutions}\,}\limits_{x \in S} Q(x) Solution set
UniqueSolutionsolution*xSQ(x)\mathop{\operatorname{solution*}\,}\limits_{x \in S} Q(x) Unique solution
SupremumsupxSf(x)\mathop{\operatorname{sup}}\limits_{x \in S} f(x) Supremum of a set or function
InfimuminfxSf(x)\mathop{\operatorname{inf}}\limits_{x \in S} f(x) Infimum of a set or function
MinimumminxSf(x)\mathop{\min}\limits_{x \in S} f(x) Minimum value of a set or function
MaximummaxxSf(x)\mathop{\max}\limits_{x \in S} f(x) Maximum value of a set or function
ArgMinarg minxSf(x)\mathop{\operatorname{arg\,min}}\limits_{x \in S} f(x) Locations of minimum value
ArgMaxarg maxxSf(x)\mathop{\operatorname{arg\,max}}\limits_{x \in S} f(x) Locations of maximum value
ArgMinUniquearg min*xSf(x)\mathop{\operatorname{arg\,min*}}\limits_{x \in S} f(x) Unique location of minimum value
ArgMaxUniquearg max*xSf(x)\mathop{\operatorname{arg\,max*}}\limits_{x \in S} f(x) Unique location of maximum value
Limitlimxaf(x)\lim_{x \to a} f(x) Limiting value
SequenceLimitlimnaf(n)\lim_{n \to a} f(n) Limiting value of sequence
RealLimitlimxaf(x)\lim_{x \to a} f(x) Limiting value, real variable
LeftLimitlimxaf(x)\lim_{x \to {a}^{-}} f(x) Limiting value, from the left
RightLimitlimxa+f(x)\lim_{x \to {a}^{+}} f(x) Limiting value, from the right
ComplexLimitlimzaf(z)\lim_{z \to a} f(z) Limiting value, complex variable
MeromorphicLimitlimzaf(z)\lim_{z \to a} f(z) Limiting value, allowing poles
SequenceLimitInferiorlim infnaf(n)\liminf_{n \to a} f(n) Limit inferior of sequence
SequenceLimitSuperiorlim supnaf(n)\limsup_{n \to a} f(n) Limit superior of sequence
Derivativeddzf ⁣(z)\frac{d}{d z}\, f\!\left(z\right) Derivative
RealDerivativeddxf ⁣(x)\frac{d}{d x}\, f\!\left(x\right) Real derivative
ComplexDerivativeddzf ⁣(z)\frac{d}{d z}\, f\!\left(z\right) Complex derivative
ComplexBranchDerivativeddzf ⁣(z)\frac{d}{d z}\, f\!\left(z\right) Complex derivative, allowing branch cuts
MeromorphicDerivativeddzf ⁣(z)\frac{d}{d z}\, f\!\left(z\right) Complex derivative, allowing poles
Integralabf(x)dx\int_{a}^{b} f(x) \, dx Integral
IndefiniteIntegralEqualf(x)dx=g(x)+C\int f(x) \, dx = g(x) + \mathcal{C} Indefinite integral
RealIndefiniteIntegralEqualf(x)dx=g(x)+C\int f(x) \, dx = g(x) + \mathcal{C} Indefinite integral, real derivative
ComplexIndefiniteIntegralEqualf(x)dx=g(x)+C\int f(x) \, dx = g(x) + \mathcal{C} Indefinite integral, complex derivative
IsHolomorphicf(z) is holomorphic at z=cf(z) \text{ is holomorphic at } z = c Holomorphic predicate
IsMeromorphicf(z) is meromorphic at z=cf(z) \text{ is meromorphic at } z = c Meromorphic predicate
ComplexZeroMultiplicityordz=cf(z)\mathop{\operatorname{ord}}\limits_{z=c} f(z) Multiplicity (order) of complex zero
Residueresz=cf(z)\mathop{\operatorname{res}}\limits_{z=c} f(z) Complex residue
Pathabca \rightsquigarrow b \rightsquigarrow c Line path
CurvePath(f(t),t:ab)\left(f(t),\, t : a \rightsquigarrow b\right) Path along a curve
AnalyticContinuationContinuationz:abf(z)\mathop{\text{Continuation}}\limits_{\displaystyle{z: a \rightsquigarrow b}} \, f(z) Analytic continuation
Signsgn(z)\operatorname{sgn}(z) Sign function
Absz\left|z\right| Absolute value
Argarg(z)\arg(z) Complex argument
ReRe(z)\operatorname{Re}(z) Real part
ImIm(z)\operatorname{Im}(z) Imaginary part
Conjugatez\overline{z} Complex conjugate
Csgncsgn(z)\operatorname{csgn}(z) Real-valued sign function for complex numbers
ConstGammaγ\gamma The constant gamma (0.577...)
Piπ\pi The constant pi (3.14...)
GoldenRatioφ\varphi The golden ratio (1.618...)
ConstIii Imaginary unit
Expez{e}^{z} Exponential function
ConstEee The constant e (2.718...)
Powab{a}^{b} Power
Sqrtz\sqrt{z} Principal square root
Sinsin(z)\sin(z) Sine
Sincsinc(z)\operatorname{sinc}(z) Sinc function
Atanatan(z)\operatorname{atan}(z) Inverse tangent
Atan2atan2 ⁣(y,x)\operatorname{atan2}\!\left(y, x\right) Two-argument inverse tangent
LambertWWk ⁣(z)W_{k}\!\left(z\right) Lambert W-function
LambertWPuiseuxCoefficientμk\mu_{k} Coefficient in scaled Puiseux expansion of Lambert W-function
GCDgcd ⁣(a,b)\gcd\!\left(a, b\right) Greatest common divisor
LCMlcm ⁣(a,b)\operatorname{lcm}\!\left(a, b\right) Least common multiple
XGCDxgcd ⁣(a,b)\operatorname{xgcd}\!\left(a, b\right) Extended greatest common divisor
Factorialn!n ! Factorial
Binomial(nk){n \choose k} Binomial coefficient
RisingFactorial(z)k\left(z\right)_{k} Rising factorial
FallingFactorial(z)k\left(z\right)^{\underline{k}} Falling factorial
FibonacciFnF_{n} Fibonacci number
GammaΓ(z)\Gamma(z) Gamma function
LogGammalogΓ(z)\log \Gamma(z) Logarithmic gamma function
StirlingSeriesRemainderRn ⁣(z)R_{n}\!\left(z\right) Remainder term in the Stirling series for the logarithmic gamma function
ChebyshevTTn ⁣(x)T_{n}\!\left(x\right) Chebyshev polynomial of the first kind
ChebyshevUUn ⁣(x)U_{n}\!\left(x\right) Chebyshev polynomial of the second kind
Loglog(z)\log(z) Natural logarithm
PartitionsPp(n)p(n) Integer partition function
HardyRamanujanAA ⁣(n,k)A\!\left(n, k\right) Exponential sum in the Hardy-Ramanujan-Rademacher formula
RiemannZetaζ(s)\zeta(s) Riemann zeta function
RiemannZetaZeroρn\rho_{n} Nontrivial zero of the Riemann zeta function
RiemannHypothesisRH\operatorname{RH} Riemann hypothesis
DeBruijnNewmanLambdaΛ\Lambda De Bruijn-Newman constant
KeiperLiLambdaλn\lambda_{n} Keiper-Li coefficient
StieltjesGammaγn ⁣(a)\gamma_{n}\!\left(a\right) Stieltjes constant
AiryAiAi ⁣(z)\operatorname{Ai}\!\left(z\right) Airy function of the first kind
AiryBiBi ⁣(z)\operatorname{Bi}\!\left(z\right) Airy function of the second kind
BesselJJν ⁣(z)J_{\nu}\!\left(z\right) Bessel function of the first kind
BesselYYν ⁣(z)Y_{\nu}\!\left(z\right) Bessel function of the second kind
BesselIIν ⁣(z)I_{\nu}\!\left(z\right) Modified Bessel function of the first kind
BesselKKν ⁣(z)K_{\nu}\!\left(z\right) Modified Bessel function of the second kind
HankelH1Hν(1) ⁣(z)H^{(1)}_{\nu}\!\left(z\right) Hankel function of the first kind
HankelH2Hν(2) ⁣(z)H^{(2)}_{\nu}\!\left(z\right) Hankel function of the second kind
CoulombFF,η ⁣(z)F_{\ell,\eta}\!\left(z\right) Regular Coulomb wave function
CoulombGG,η ⁣(z)G_{\ell,\eta}\!\left(z\right) Irregular Coulomb wave function
CoulombHH,ηω ⁣(z)H^{\omega}_{\ell,\eta}\!\left(z\right) Outgoing and ingoing Coulomb wave function
CoulombCC ⁣(η)C_{\ell}\!\left(\eta\right) Coulomb wave function Gamow factor
CoulombSigmaσ ⁣(η)\sigma_{\ell}\!\left(\eta\right) Coulomb wave function phase shift
BernoulliBBnB_{n} Bernoulli number
BernoulliPolynomialBn ⁣(z)B_{n}\!\left(z\right) Bernoulli polynomial
StirlingCycle[nk]\left[{n \atop k}\right] Unsigned Stirling number of the first kind
StirlingS1s ⁣(n,k)s\!\left(n, k\right) Signed Stirling number of the first kind
StirlingS2{nk}\left\{{n \atop k}\right\} Stirling number of the second kind
HHH\mathbb{H} Upper complex half-plane
Hypergeometric2F12F1 ⁣(a,b,c,z)\,{}_2F_1\!\left(a, b, c, z\right) Gauss hypergeometric function
Hypergeometric2F1Regularized2F1 ⁣(a,b,c,z)\,{}_2{\textbf F}_1\!\left(a, b, c, z\right) Regularized Gauss hypergeometric function
Hypergeometric0F10F1 ⁣(a,z)\,{}_0F_1\!\left(a, z\right) Confluent hypergeometric limit function
Hypergeometric0F1Regularized0F1 ⁣(a,z)\,{}_0{\textbf F}_1\!\left(a, z\right) Regularized confluent hypergeometric limit function
Hypergeometric1F11F1 ⁣(a,b,z)\,{}_1F_1\!\left(a, b, z\right) Kummer confluent hypergeometric function
Hypergeometric1F1Regularized1F1 ⁣(a,b,z)\,{}_1{\textbf F}_1\!\left(a, b, z\right) Regularized Kummer confluent hypergeometric function
HypergeometricUU ⁣(a,b,z)U\!\left(a, b, z\right) Tricomi confluent hypergeometric function
HypergeometricUStarU ⁣(a,b,z)U^{*}\!\left(a, b, z\right) Scaled Tricomi confluent hypergeometric function
Hypergeometric2F02F0 ⁣(a,b,z)\,{}_2F_0\!\left(a, b, z\right) Tricomi confluent hypergeometric function, alternative notation
HypergeometricUStarRemainderRn ⁣(a,b,z)R_{n}\!\left(a,b,z\right) Error term in asymptotic expansion of Tricomi confluent hypergeometric function
Erferf(z)\operatorname{erf}(z) Error function
Erfcerfc(z)\operatorname{erfc}(z) Complementary error function
Erfierfi(z)\operatorname{erfi}(z) Imaginary error function
JacobiThetaθj ⁣(z,τ)\theta_{j}\!\left(z , \tau\right) Jacobi theta function
JacobiThetaPermutationSj ⁣(a,b,c,d)S_{j}\!\left(a, b, c, d\right) Index permutation in modular transformation of Jacobi theta functions
JacobiThetaEpsilonεj ⁣(a,b,c,d)\varepsilon_{j}\!\left(a, b, c, d\right) Root of unity in modular transformation of Jacobi theta functions
WeierstrassP ⁣(z,τ)\wp\!\left(z, \tau\right) Weierstrass elliptic function
WeierstrassZetaζ ⁣(z,τ)\zeta\!\left(z, \tau\right) Weierstrass zeta function
WeierstrassSigmaσ ⁣(z,τ)\sigma\!\left(z, \tau\right) Weierstrass sigma function
LatticeΛ(a,b)\Lambda_{(a, b)} Complex lattice with periods a, b
PPP\mathbb{P} Prime numbers
PrimeNumberpnp_{n} nth prime number
PrimePiπ(x)\pi(x) Prime counting function
SL2ZSL2(Z)\operatorname{SL}_2(\mathbb{Z}) Modular group
PSL2ZPSL2(Z)\operatorname{PSL}_2(\mathbb{Z}) Modular group (canonical representatives)
ModularGroupActionγτ\gamma \circ \tau Action of modular group
ModularGroupFundamentalDomainF\mathcal{F} Fundamental domain for action of the modular group
ModularJj(τ)j(\tau) Modular j-invariant
PrimitiveReducedPositiveIntegralBinaryQuadraticFormsQD\mathcal{Q}^{*}_{D} Primitive reduced positive integral binary quadratic forms
HilbertClassPolynomialHD ⁣(x)H_{D}\!\left(x\right) Hilbert class polynomial
DedekindEtaη(τ)\eta(\tau) Dedekind eta function
EulerQSeriesϕ(q)\phi(q) Euler's q-series
DedekindEtaEpsilonε ⁣(a,b,c,d)\varepsilon\!\left(a, b, c, d\right) Root of unity in the functional equation of the Dedekind eta function
DedekindSums ⁣(n,k)s\!\left(n, k\right) Dedekind sum
EisensteinGGk ⁣(τ)G_{k}\!\left(\tau\right) Eisenstein series
EisensteinEEk ⁣(τ)E_{k}\!\left(\tau\right) Normalized Eisenstein series
ModularLambdaλ(τ)\lambda(\tau) Modular lambda function
ModularLambdaFundamentalDomainFλ\mathcal{F}_{\lambda} Fundamental domain of the modular lambda function
DirichletGroupGqG_{q} Dirichlet characters with given modulus
PrimitiveDirichletCharactersGqprimitiveG_{q}^{\text{primitive}} Primitive Dirichlet characters with given modulus
DirichletCharacterχq.\chi_{q \, . \, \ell} Dirichlet character
ConreyGeneratorgpg_{p} Conrey generator
DiscreteLoglogb ⁣(x)modq\log_{b}\!\left(x\right) \bmod q Discrete logarithm
DirichletLL ⁣(s,χ)L\!\left(s, \chi\right) Dirichlet L-function
GeneralizedBernoulliBBn,χB_{n,\chi} Generalized Bernoulli number
DirichletLZeroρn,χ\rho_{n,\chi} Nontrivial zero of Dirichlet L-function
GeneralizedRiemannHypothesisGRH\operatorname{GRH} Generalized Riemann hypothesis
DirichletLambdaΛ ⁣(s,χ)\Lambda\!\left(s, \chi\right) Completed Dirichlet L-function
GaussSumGq ⁣(χ)G_{q}\!\left(\chi\right) Gauss sum
BetaFunctionB ⁣(a,b)\mathrm{B}\!\left(a, b\right) Beta function
IncompleteBetaBx ⁣(a,b)\mathrm{B}_{x}\!\left(a, b\right) Incomplete beta function
IncompleteBetaRegularizedIx ⁣(a,b)I_{x}\!\left(a, b\right) Regularized incomplete beta function
Totientφ(n)\varphi(n) Euler totient function
LandauGg(n)g(n) Landau's function
ConstCatalanGG Catalan's constant
DigammaFunctionψ ⁣(z)\psi\!\left(z\right) Digamma function
DigammaFunctionZeroxnx_{n} Zero of the digamma function
SloaneAA00000X ⁣(n)\text{A00000X}\!\left(n\right) Sequence X in Sloane's OEIS
MultiZetaValueζ ⁣(s1,,sk)\zeta\!\left({s}_{1}, \ldots, {s}_{k}\right) Multiple zeta value (MZV)
BellNumberBnB_{n} Bell number
BarnesGG(z)G(z) Barnes G-function
LogBarnesGlogG(z)\log G(z) Logarithmic Barnes G-function
LogBarnesGRemainderRN ⁣(z)R_{N}\!\left(z\right) Remainder term in asymptotic expansion of logarithmic Barnes G-function
HalphenConstantΛ\Lambda Halphen's constant (one-ninth constant) 0.10765...
EllipticKK(m)K(m) Complete elliptic integral of the first kind
EllipticEE(m)E(m) Complete elliptic integral of the second kind
SquaresRrk ⁣(n)r_{k}\!\left(n\right) Sum of squares function
LiouvilleLambdaλ(n)\lambda(n) Liouville function
DivisorSigmaσk ⁣(n)\sigma_{k}\!\left(n\right) Sum of divisors function
MoebiusMuμ(n)\mu(n) Möbius function
KroneckerDeltaδ(x,y)\delta_{(x,y)} Kronecker delta
LegendrePolynomialPn ⁣(z)P_{n}\!\left(z\right) Legendre polynomial
LegendrePolynomialZeroxn,kx_{n,k} Legendre polynomial zero
GaussLegendreWeightwn,kw_{n,k} Gauss-Legendre quadrature weight
HermitePolynomialHn ⁣(z)H_{n}\!\left(z\right) Hermite polynomial
BernsteinEllipseEρ\mathcal{E}_{\rho} Bernstein ellipse with foci -1,+1 and semi-axis sum rho
UnitCircleT\mathbb{T} Unit circle
Matrix2x2(abcd)\begin{pmatrix} a & b \\ c & d \end{pmatrix} Two by two matrix
LogIntegralli(z)\operatorname{li}(z) Logarithmic integral
RiemannXiξ(s)\xi(s) Riemann xi-function
FormalPowerSeriesK[[x]]K[[x]] Formal power series
FormalLaurentSeriesK( ⁣(x) ⁣)K(\!(x)\!) Formal Laurent series
List[]\left[\ldots\right] List with given elements
Tuple()\left(\ldots\right) Tuple with given elements

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2019-11-11 15:50:15.016492 UTC