Symbol:

`ArgMaxUnique`— $\mathop{\operatorname{arg\,max*}}\limits_{P\left(x\right)} f\!\left(x\right)$ — Unique location of maximum value`ArgMaxUnique(f(x), x, P(x))`represents the unique point $r$ satisfying $P\!\left(r\right)$ such that $f\!\left(r\right) = \mathop{\max}\limits_{P\left(x\right)} f\!\left(x\right)$. This operation is only defined if such a unique point exists.

The argument

`x`to this operator defines a locally bound variable. The corresponding predicate $P\!\left(x\right)$ must define the domain of $x$ unambiguously; that is, it must include a statement such as $x \in S$ where $S$ is a known set. More generally,`x`can be a collection of variables $\left(x, y, \ldots\right)$ all of which become locally bound, with a corresponding predicate $P\!\left(x, y, \ldots\right)$.Definitions:

Fungrim symbol | Notation | Short description |
---|---|---|

ArgMaxUnique | $\mathop{\operatorname{arg\,max*}}\limits_{P\left(x\right)} f\!\left(x\right)$ | Unique location of maximum value |

Maximum | $\mathop{\max}\limits_{P\left(x\right)} f\!\left(x\right)$ | Maximum value of a set or function |

Source code for this entry:

Entry(ID("be4926"), SymbolDefinition(ArgMaxUnique, ArgMaxUnique(f(x), x, P(x)), "Unique location of maximum value"), Description(SourceForm(ArgMaxUnique(f(x), x, P(x))), "represents the unique point", r, "satisfying", P(r), "such that", Equal(f(r), Maximum(f(x), x, P(x))), ". This operation is only defined if such a unique point exists."), Description("The argument", SourceForm(x), "to this operator defines a locally bound variable.", "The corresponding predicate", P(x), "must define the domain of", x, "unambiguously; that is, it must include a statement such as", Element(x, S), "where", S, "is a known set.", "More generally,", SourceForm(x), "can be a collection of variables", Tuple(x, y, Ellipsis), "all of which become locally bound, with a corresponding predicate", P(x, y, Ellipsis), "."))