Fungrim home page

Riemann zeta function

Table of contents: Definitions - Illustrations - Dirichlet series - Euler product - Laurent series - Special values - Analytic properties - Zeros - Complex parts - Functional equation - Bounds and inequalities - Euler-Maclaurin formula - Approximations

Definitions

e0a6a2
Symbol: RiemannZeta ζ ⁣(s)\zeta\!\left(s\right) Riemann zeta function

Illustrations

3131df
Image: X-ray of ζ ⁣(s)\zeta\!\left(s\right) on s[22,22]+[27,27]is \in \left[-22, 22\right] + \left[-27, 27\right] i with the critical strip highlighted

Dirichlet series

da2fdb
ζ ⁣(s)=k=11ks\zeta\!\left(s\right) = \sum_{k=1}^{\infty} \frac{1}{{k}^{s}}
1d46d4
1ζ ⁣(s)=k=1μ(k)ks\frac{1}{\zeta\!\left(s\right)} = \sum_{k=1}^{\infty} \frac{\mu(k)}{{k}^{s}}

Euler product

8f5e66
ζ ⁣(s)=p111ps\zeta\!\left(s\right) = \prod_{p} \frac{1}{1 - \frac{1}{{p}^{s}}}

Laurent series

Related topic: Stieltjes constants
b1a2e1
ζ ⁣(s)=1s1+n=0(1)nn!γn(s1)n\zeta\!\left(s\right) = \frac{1}{s - 1} + \sum_{n=0}^{\infty} \frac{{\left(-1\right)}^{n}}{n !} \gamma_{n} {\left(s - 1\right)}^{n}

Special values

a01b6e
ζ ⁣(2)=π26\zeta\!\left(2\right) = \frac{{\pi}^{2}}{6}
e84983
ζ ⁣(3)Q\zeta\!\left(3\right) \notin \mathbb{Q}
72ccda
ζ ⁣(2n)=(1)n+1B2n(2π)2n2(2n)!\zeta\!\left(2 n\right) = \frac{{\left(-1\right)}^{n + 1} B_{2 n} {\left(2 \pi\right)}^{2 n}}{2 \left(2 n\right)!}
51fd98
ζ ⁣(n)=(1)nBn+1n+1\zeta\!\left(-n\right) = \frac{{\left(-1\right)}^{n} B_{n + 1}}{n + 1}
7cb17f
Table of ζ ⁣(2n)\zeta\!\left(2 n\right) for 1n201 \le n \le 20
e50a56
Table of ζ ⁣(n)\zeta\!\left(-n\right) for 0n300 \le n \le 30
e93ca8
Table of ζ ⁣(n)\zeta\!\left(n\right) to 50 digits for 2n502 \le n \le 50

Analytic properties

8b5ddb
ζ ⁣(s) is holomorphic on sC{1}\zeta\!\left(s\right) \text{ is holomorphic on } s \in \mathbb{C} \setminus \left\{1\right\}
52c4ab
polessC{~}ζ ⁣(s)={1}\mathop{\operatorname{poles}\,}\limits_{s \in \mathbb{C} \cup \left\{{\tilde \infty}\right\}} \zeta\!\left(s\right) = \left\{1\right\}
fdb94b
EssentialSingularities ⁣(ζ ⁣(s),s,C{~})={~}\operatorname{EssentialSingularities}\!\left(\zeta\!\left(s\right), s, \mathbb{C} \cup \left\{{\tilde \infty}\right\}\right) = \left\{{\tilde \infty}\right\}
36a095
BranchPoints ⁣(ζ ⁣(s),s,C{~})={}\operatorname{BranchPoints}\!\left(\zeta\!\left(s\right), s, \mathbb{C} \cup \left\{{\tilde \infty}\right\}\right) = \left\{\right\}
9a258f
BranchCuts ⁣(ζ ⁣(s),s,C)={}\operatorname{BranchCuts}\!\left(\zeta\!\left(s\right), s, \mathbb{C}\right) = \left\{\right\}

Zeros

Related topics: Zeros of the Riemann zeta function

669509
Symbol: RiemannZetaZero ρn\rho_{n} Nontrivial zero of the Riemann zeta function
c03de4
Symbol: RiemannHypothesis RH\operatorname{RH} Riemann hypothesis
49704a
(RH)    (Re ⁣(ρn)=12   for all nZ1)\left(\operatorname{RH}\right) \iff \left(\operatorname{Re}\!\left(\rho_{n}\right) = \frac{1}{2} \;\text{ for all } n \in \mathbb{Z}_{\ge 1}\right)
2e1ff3
zerossRζ ⁣(s)={2n:nZ1}\mathop{\operatorname{zeros}\,}\limits_{s \in \mathbb{R}} \zeta\!\left(s\right) = \left\{ -2 n : n \in \mathbb{Z}_{\ge 1} \right\}
a78abc
zerossC,0Re(s)1ζ ⁣(s)={ρn:nZ  and  n0}\mathop{\operatorname{zeros}\,}\limits_{s \in \mathbb{C},\,0 \le \operatorname{Re}(s) \le 1} \zeta\!\left(s\right) = \left\{ \rho_{n} : n \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; n \ne 0 \right\}
692e42
zerossCζ ⁣(s)={2n:nZ1}{ρn:nZ  and  n0}\mathop{\operatorname{zeros}\,}\limits_{s \in \mathbb{C}} \zeta\!\left(s\right) = \left\{ -2 n : n \in \mathbb{Z}_{\ge 1} \right\} \cup \left\{ \rho_{n} : n \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; n \ne 0 \right\}
cbbf16
0<Re ⁣(ρn)<10 < \operatorname{Re}\!\left(\rho_{n}\right) < 1
e6ff64
Re ⁣(ρn)=12\operatorname{Re}\!\left(\rho_{n}\right) = \frac{1}{2}
60c2ec
ρn=ρn\rho_{-n} = \overline{\rho_{n}}
71d9d9
Table of Im ⁣(ρn)\operatorname{Im}\!\left(\rho_{n}\right) to 50 digits for 1n501 \le n \le 50

Complex parts

69348a
ζ ⁣(s)=ζ ⁣(s)\zeta\!\left(\overline{s}\right) = \overline{\zeta\!\left(s\right)}

Functional equation

9ee8bc
ζ ⁣(s)=2(2π)s1sin ⁣(πs2)Γ ⁣(1s)ζ ⁣(1s)\zeta\!\left(s\right) = 2 {\left(2 \pi\right)}^{s - 1} \sin\!\left(\frac{\pi s}{2}\right) \Gamma\!\left(1 - s\right) \zeta\!\left(1 - s\right)
1a63af
ζ ⁣(1s)=2cos ⁣(12πs)(2π)sΓ(s)ζ ⁣(s)\zeta\!\left(1 - s\right) = \frac{2 \cos\!\left(\frac{1}{2} \pi s\right)}{{\left(2 \pi\right)}^{s}} \Gamma(s) \zeta\!\left(s\right)

Bounds and inequalities

809bc0
ζ ⁣(s)ζ ⁣(Re(s))\left|\zeta\!\left(s\right)\right| \le \zeta\!\left(\operatorname{Re}(s)\right)
3a5eb6
ζ ⁣(s)<31+s1s1+s2π(1+ηRe(s))/2ζ ⁣(1+η)\left|\zeta\!\left(s\right)\right| < 3 \left|\frac{1 + s}{1 - s}\right| {\left|\frac{1 + s}{2 \pi}\right|}^{\left( 1 + \eta - \operatorname{Re}(s) \right) / 2} \zeta\!\left(1 + \eta\right)

Euler-Maclaurin formula

792f7b
ζ ⁣(s)=k=1N11ks+N1ss1+1Ns(12+k=1MB2k(2k)!(s)2k1N2k1)NB2M ⁣(tt)(2M)!(s)2Mts+2Mdt\zeta\!\left(s\right) = \sum_{k=1}^{N - 1} \frac{1}{{k}^{s}} + \frac{{N}^{1 - s}}{s - 1} + \frac{1}{{N}^{s}} \left(\frac{1}{2} + \sum_{k=1}^{M} \frac{B_{2 k}}{\left(2 k\right)!} \frac{\left(s\right)_{2 k - 1}}{{N}^{2 k - 1}}\right) - \int_{N}^{\infty} \frac{B_{2 M}\!\left(t - \left\lfloor t \right\rfloor\right)}{\left(2 M\right)!} \frac{\left(s\right)_{2 M}}{{t}^{s + 2 M}} \, dt

Approximations

d31b04
ζ ⁣(s)(k=1N11ks+N1ss1+1Ns(12+k=1MB2k(2k)!(s)2k1N2k1))4(s)2M(2π)2MN(Re(s)+2M1)Re(s)+2M1\left|\zeta\!\left(s\right) - \left(\sum_{k=1}^{N - 1} \frac{1}{{k}^{s}} + \frac{{N}^{1 - s}}{s - 1} + \frac{1}{{N}^{s}} \left(\frac{1}{2} + \sum_{k=1}^{M} \frac{B_{2 k}}{\left(2 k\right)!} \frac{\left(s\right)_{2 k - 1}}{{N}^{2 k - 1}}\right)\right)\right| \le \frac{4 \left|\left(s\right)_{2 M}\right|}{{\left(2 \pi\right)}^{2 M}} \frac{{N}^{-\left(\operatorname{Re}(s) + 2 M - 1\right)}}{\operatorname{Re}(s) + 2 M - 1}
e37535
(121s)ζ ⁣(s)1d(n)k=0n1(1)k(d(n)d(k))(k+1)s3(1+2Im(s))(3+8)neIm(s)π/2   where d(k)=ni=0k(n+i1)!4i(ni)!(2i)!\left|\left(1 - {2}^{1 - s}\right) \zeta\!\left(s\right) - \frac{1}{d(n)} \sum_{k=0}^{n - 1} \frac{{\left(-1\right)}^{k} \left(d(n) - d(k)\right)}{{\left(k + 1\right)}^{s}}\right| \le \frac{3 \left(1 + 2 \left|\operatorname{Im}(s)\right|\right)}{{\left(3 + \sqrt{8}\right)}^{n}} {e}^{\left|\operatorname{Im}(s)\right| \pi / 2}\; \text{ where } d(k) = n \sum_{i=0}^{k} \frac{\left(n + i - 1\right)! {4}^{i}}{\left(n - i\right)! \left(2 i\right)!}

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC