Represents the set of integers.
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
ZZ | Z | Integers |
Source code for this entry:
Entry(ID("298e9e"), SymbolDefinition(ZZ, ZZ, "Integers"), Description("Represents the set of integers."))
Table of contents: Numbers - Infinities - Ranges and intervals
Fungrim symbol | Notation | Short description |
---|---|---|
ZZ | Z | Integers |
Entry(ID("298e9e"), SymbolDefinition(ZZ, ZZ, "Integers"), Description("Represents the set of integers."))
Fungrim symbol | Notation | Short description |
---|---|---|
Q | Rational numbers |
Entry(ID("7be5dc"), SymbolDefinition(QQ, QQ, "Rational numbers"), Description("Represents the set of rational numbers."))
Fungrim symbol | Notation | Short description |
---|---|---|
RR | R | Real numbers |
Entry(ID("bfe358"), SymbolDefinition(RR, RR, "Real numbers"), Description("Represents the set of real numbers."))
Fungrim symbol | Notation | Short description |
---|---|---|
CC | C | Complex numbers |
Entry(ID("0deea6"), SymbolDefinition(CC, CC, "Complex numbers"), Description("Represents the set of complex numbers."))
\mathbb{Q} = \left\{ \frac{p}{q} : p \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; q \in \mathbb{Z} \setminus \left\{0\right\} \right\}
Fungrim symbol | Notation | Short description |
---|---|---|
Q | Rational numbers | |
ZZ | Z | Integers |
Entry(ID("c01d22"), Formula(Equal(QQ, Set(Div(p, q), For(Tuple(p, q)), And(Element(p, ZZ), Element(q, SetMinus(ZZ, Set(0))))))))
\mathbb{C} = \left\{ x + y i : x \in \mathbb{R} \;\mathbin{\operatorname{and}}\; y \in \mathbb{R} \right\}
Fungrim symbol | Notation | Short description |
---|---|---|
CC | C | Complex numbers |
ConstI | i | Imaginary unit |
RR | R | Real numbers |
Entry(ID("77ef0c"), Formula(Equal(CC, Set(Add(x, Mul(y, ConstI)), For(Tuple(x, y)), And(Element(x, RR), Element(y, RR))))))
Fungrim symbol | Notation | Short description |
---|---|---|
AlgebraicNumbers | Q | Algebraic numbers |
Entry(ID("be9c83"), SymbolDefinition(AlgebraicNumbers, AlgebraicNumbers, "Algebraic numbers"), Description("Represents the set of algebraic numbers."))
\overline{\mathbb{Q}} = \left\{ z : z \in \mathbb{C} \,\mathbin{\operatorname{and}}\, \left(f(z) = 0 \;\text{ for some } f \in \mathbb{Z}[\text{x}_{1}] \setminus \left\{0\right\}\right) \right\}
Fungrim symbol | Notation | Short description |
---|---|---|
AlgebraicNumbers | Q | Algebraic numbers |
CC | C | Complex numbers |
ZZ | Z | Integers |
Entry(ID("aa6b07"), Formula(Equal(AlgebraicNumbers, Set(z, ForElement(z, CC), Parentheses(Exists(Equal(CallIndeterminate(f, XX(1), z), 0), ForElement(f, SetMinus(Polynomials(ZZ, XX(1)), Set(0)))))))))
\mathbb{Z} \subset \mathbb{Q} \subset \overline{\mathbb{Q}} \subset \mathbb{C}
Fungrim symbol | Notation | Short description |
---|---|---|
ZZ | Z | Integers |
Q | Rational numbers | |
AlgebraicNumbers | Q | Algebraic numbers |
CC | C | Complex numbers |
Entry(ID("e5a04c"), Formula(Subset(ZZ, QQ, AlgebraicNumbers, CC)))
\sqrt{2} \in \overline{\mathbb{Q}}
Fungrim symbol | Notation | Short description |
---|---|---|
Sqrt | z | Principal square root |
AlgebraicNumbers | Q | Algebraic numbers |
Entry(ID("24c179"), Formula(Element(Sqrt(2), AlgebraicNumbers)))
i \in \overline{\mathbb{Q}}
Fungrim symbol | Notation | Short description |
---|---|---|
ConstI | i | Imaginary unit |
AlgebraicNumbers | Q | Algebraic numbers |
Entry(ID("cd8a07"), Formula(Element(ConstI, AlgebraicNumbers)))
\pi \notin \overline{\mathbb{Q}}
Fungrim symbol | Notation | Short description |
---|---|---|
Pi | π | The constant pi (3.14...) |
AlgebraicNumbers | Q | Algebraic numbers |
Entry(ID("155575"), Formula(NotElement(Pi, AlgebraicNumbers)))
Fungrim symbol | Notation | Short description |
---|---|---|
Infinity | ∞ | Positive infinity |
ConstI | i | Imaginary unit |
RR | R | Real numbers |
Entry(ID("b738b1"), SymbolDefinition(Infinity, Infinity, "Positive infinity"), Description("This formal symbol represents a quantity larger than any real number. We define", Equal(Pos(Infinity), Infinity), "."), Description("Multiplication of", Infinity, "by a nonzero complex number represents an infinite limit with the given direction in the complex plane.", "In particular,", Neg(Infinity), ",", Mul(ConstI, Infinity), "and", Mul(Neg(ConstI), Infinity), "are frequently used."), Description("The set", Union(RR, Set(Infinity, Neg(Infinity))), "is known as the extended real line."))
Fungrim symbol | Notation | Short description |
---|---|---|
UnsignedInfinity | ∞~ | Unsigned infinity |
CC | C | Complex numbers |
Entry(ID("486ab2"), SymbolDefinition(UnsignedInfinity, UnsignedInfinity, "Unsigned infinity"), Description("This formal symbol represents a quantity with infinite magnitude and undefined sign."), Description("It is typically used to represent the value of meromorphic functions at poles."), Description("The set", Union(CC, Set(UnsignedInfinity)), "represents the complex Riemann sphere."))
Fungrim symbol | Notation | Short description |
---|---|---|
ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
Entry(ID("03fbae"), SymbolDefinition(ZZGreaterEqual, ZZGreaterEqual(n), "Integers greater than or equal to n"))
Fungrim symbol | Notation | Short description |
---|---|---|
ZZLessEqual | Z≤n | Integers less than or equal to n |
Entry(ID("2a52af"), SymbolDefinition(ZZLessEqual, ZZLessEqual(n), "Integers less than or equal to n"), Description("This symbol may be rendered differently when", n, "is a concrete value, for example: ", ZZLessEqual(-3)))
Fungrim symbol | Notation | Short description |
---|---|---|
Range | {a,a+1,…,b} | Integers between given endpoints |
ZZ | Z | Integers |
Entry(ID("00b82b"), SymbolDefinition(Range, Range(a, b), "Integers between given endpoints"), CodeExample(Range(a, b), "Given", Element(a, ZZ), "and", Element(b, ZZ), ", represents", Set(n, ForElement(n, ZZ), LessEqual(a, n, b)), "."), CodeExample(Range(a, b), "Given", Element(a, ZZ), "and", Element(b, ZZ), ", is equivalent to", SourceForm(Set(n, For(n, a, b))), "."), CodeExample(Range(3, 3), "Represents the singleton set", Set(3), ".", " Note: potentially confusing rendering."), CodeExample(Range(3, 2), "Represents the empty set.", " Note: potentially confusing rendering."))
Fungrim symbol | Notation | Short description |
---|---|---|
ClosedInterval | [a,b] | Closed interval |
RR | R | Real numbers |
Infinity | ∞ | Positive infinity |
ConstI | i | Imaginary unit |
Entry(ID("12d5ab"), SymbolDefinition(ClosedInterval, ClosedInterval(a, b), "Closed interval"), CodeExample(ClosedInterval(a, b), "Represents", Set(x, ForElement(x, Union(RR, Set(Neg(Infinity), Infinity))), LessEqual(a, x, b)), "."), CodeExample(ClosedInterval(0, 1), "Represents the closed unit interval."), CodeExample(ClosedInterval(1, 1), "Represents the singleton set", Set(1), "."), CodeExample(ClosedInterval(Neg(Infinity), 0), "Represents half the extended real line (including minus infinity and zero)."), CodeExample(ClosedInterval(1, -1), "Represents the empty set.", " Note: potentially confusing rendering."), CodeExample(Add(1, Mul(ClosedInterval(0, 1), ConstI)), "Represents a set of points in the complex plane. ", SourceForm(ClosedInterval(a, b)), "should only be used with extended real number", a, "and", b, "as endpoints, but line segments in the complex plane can be constructed by applying arithmetic operations to a set of real numbers (acting pointwise)."), CodeExample(Add(ClosedInterval(1, 4), Mul(ClosedInterval(0, 1), ConstI)), "Represents a rectangle in the complex plane. "))
Fungrim symbol | Notation | Short description |
---|---|---|
OpenInterval | (a,b) | Open interval |
RR | R | Real numbers |
Infinity | ∞ | Positive infinity |
ConstI | i | Imaginary unit |
Entry(ID("3fe68f"), SymbolDefinition(OpenInterval, OpenInterval(a, b), "Open interval"), CodeExample(OpenInterval(a, b), "Represents", Set(x, ForElement(x, Union(RR, Set(Neg(Infinity), Infinity))), Less(a, x, b)), "."), CodeExample(OpenInterval(0, 1), "Represents the open unit interval."), CodeExample(OpenInterval(1, 1), "Represents the empty set."), CodeExample(OpenInterval(Neg(Infinity), 0), "Represents half the extended real line (excluding minus infinity and zero)."), CodeExample(OpenInterval(1, -1), "Represents the empty set.", " Note: potentially confusing rendering."), CodeExample(Add(1, Mul(OpenInterval(0, 1), ConstI)), "Represents a set of points in the complex plane. ", SourceForm(OpenInterval(a, b)), "should only be used with extended real number", a, "and", b, "as endpoints, but line segments in the complex plane can be constructed by applying arithmetic operations to a set of real numbers (acting pointwise)."), CodeExample(Add(OpenInterval(1, 4), Mul(OpenInterval(0, 1), ConstI)), "Represents a rectangle in the complex plane. "))
Fungrim symbol | Notation | Short description |
---|---|---|
ClosedOpenInterval | [a,b) | Closed-open interval |
RR | R | Real numbers |
Infinity | ∞ | Positive infinity |
ConstI | i | Imaginary unit |
Entry(ID("b2162a"), SymbolDefinition(ClosedOpenInterval, ClosedOpenInterval(a, b), "Closed-open interval"), CodeExample(ClosedOpenInterval(a, b), "Represents", Set(x, ForElement(x, Union(RR, Set(Neg(Infinity), Infinity))), And(LessEqual(a, x), Less(x, b))), "."), CodeExample(ClosedOpenInterval(0, 1), "Represents the unit interval (including 0, excluding 1)."), CodeExample(ClosedOpenInterval(1, 1), "Represents the empty set."), CodeExample(ClosedOpenInterval(Neg(Infinity), 0), "Represents half the extended real line (including minus infinity, excluding zero)."), CodeExample(ClosedOpenInterval(1, -1), "Represents the empty set.", " Note: potentially confusing rendering."), CodeExample(Add(1, Mul(ClosedOpenInterval(0, 1), ConstI)), "Represents a set of points in the complex plane. ", SourceForm(ClosedOpenInterval(a, b)), "should only be used with extended real number", a, "and", b, "as endpoints, but line segments in the complex plane can be constructed by applying arithmetic operations to a set of real numbers (acting pointwise)."), CodeExample(Add(ClosedOpenInterval(1, 4), Mul(ClosedOpenInterval(0, 1), ConstI)), "Represents a rectangle in the complex plane. "))
Fungrim symbol | Notation | Short description |
---|---|---|
OpenClosedInterval | (a,b] | Open-closed interval |
RR | R | Real numbers |
Infinity | ∞ | Positive infinity |
ConstI | i | Imaginary unit |
Entry(ID("ed302a"), SymbolDefinition(OpenClosedInterval, OpenClosedInterval(a, b), "Open-closed interval"), CodeExample(OpenClosedInterval(a, b), "Represents", Set(x, ForElement(x, Union(RR, Set(Neg(Infinity), Infinity))), And(Less(a, x), LessEqual(x, b))), "."), CodeExample(OpenClosedInterval(0, 1), "Represents the unit interval (excluding 0, including 1)."), CodeExample(OpenClosedInterval(1, 1), "Represents the empty set."), CodeExample(OpenClosedInterval(Neg(Infinity), 0), "Represents half the extended real line (excluding minus infinity, including zero)."), CodeExample(OpenClosedInterval(1, -1), "Represents the empty set.", " Note: potentially confusing rendering."), CodeExample(Add(1, Mul(OpenClosedInterval(0, 1), ConstI)), "Represents a set of points in the complex plane. ", SourceForm(OpenClosedInterval(a, b)), "should only be used with extended real number", a, "and", b, "as endpoints, but line segments in the complex plane can be constructed by applying arithmetic operations to a set of real numbers (acting pointwise)."), CodeExample(Add(OpenClosedInterval(1, 4), Mul(OpenClosedInterval(0, 1), ConstI)), "Represents a rectangle in the complex plane. "))
Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.
2021-03-15 19:12:00.328586 UTC